Каталог курсовых, рефератов, научных работ! Ilya-ya.ru Лекции, рефераты, курсовые, научные работы!

Биологические ритмы как способ существования живой материи

Биологические ритмы как способ существования живой материи

Биологические ритмы как способ существования живой материи

Доброборский Б.С., к.т.н., действительный член международной академии наук экологии, безопасности человека и природы

1. Историческая справка

О существовании биологических ритмов людям известно с древних времен.

Уже в “Ветхом Завете” даны точные указания о правильном образе жизни, питании, чередовании фаз активности и отдыха. Об этом писали многие выдающиеся ученые древности: Гиппократ, Авиценна и другие.

Основателем хронобиологии – науки о биоритмах, принято считать немецкого врача Христофора Вильяма Гуфелянда, который в 1797 году обратил внимание коллег на универсальность ритмических процессов в биологии: каждый день жизнь повторяется в определенных ритмах, а суточный цикл, связанный с вращением Земли вокруг своей оси регулирует жизнедеятельность всего живого, включая организм человека.

Первые серьезные научные исследования в этой области начали проводиться в начале 20-го века, в том числе российскими учеными И.П. Павловым, В.В. Вернадским, А.Л. Чижевским и другими.

К концу 20-го века факт ритмичности биологических процессов живых организмов стал считаться одним из фундаментальных свойств живой материи и сущностью организации жизни.

Однако природа биоритмов до последнего времени была неясна.

Как бывает в таких случаях, исследования биоритмов представляли собой процесс накопления информации, выявления свойств и закономерностей методами статистики, рассматривались вопросы практического использования.

В результате в науке о биоритмах возникло два научных направления: хронобиология и хрономедицина.

Одной из основных работ в этой области можно считать разработанную Ф. Хальбергом в 1964 году классификацию биологических ритмов.

В соответствии с этой классификацией все биоритмы подразделяются следующим образом:

ультрадианные ритмы с периодом меньше 20 часов;

циркадианные - с периодом 24±4 часов;

инфрадианные - с периодом больше 28 часов.

Среди последних следует выделять:

циркасемисептанные ритмы с периодом примерно 3±0,5 сут;

циркасептанные ритмы с периодом 7±3 сут.;

циркадисептанные - с периодом 14±3 сут.;

циркавигинтанные - с периодом 21±3 сут.;

циркатригинтанные - с периодом 30±5 сут.;

цирканнуальные - с периодом 1 год ± 2 месяца

По поводу природы биоритмов был высказан целый ряд гипотез, производились многочисленные попытки определить еще целый ряд новых закономерностей.

Вот некоторые из них.

В 1959 году Юрген Ашофф, директор Института физиологии поведения имени Макса Планка в Андексе (Германия) обнаружил закономерность, которая была названа "Правилом Ашоффа" (Под этим названием оно вошло в хронобиологию и историю науки). Правило гласит: "У ночных животных активный период (бодрствование) более продолжителен при постоянном освещении, в то время как у дневных животных бодрствование более продолжительно при постоянной темноте". И действительно, как впоследствии установил Ю. Ашофф, при длительной изоляции человека или животных в темноте цикл "бодрствование - сон" удлиняется за счет увеличения продолжительности фазы бодрствования. Из правила Ашоффа предполагается следствие, что именно свет определяет циркадные колебания организма.

Шведский исследователь Фольсгрен в опытах на кроликах обнаружил суточный ритм гликогена и желчеобразования.

Советские ученые Е.Е. Введенский, А.И. Ухтомский, И.П. Павлов и  В.В. Парина осуществили попытку теоретически обосновать механизмы возникновения ритмических процессов в нервной системе и показали, что ее (т. е. нервной системы) ритм определяет прежде всего ритм возбуждения и торможения.

Известные российские ученые Ф.И. Комаров и С.И. Рапопорт в своей книге “Хронобиология и хрономедицина” дают следующее определение биоритмов: “Ритм представляет собой характеристику периодической временной структуры. Ритмичность характеризует как определенный порядок временной последовательности, так и длительность отрезков времени, поскольку содержит чередование фаз различной продолжительности”.

Таким образом, до последнего времени природа и основные физиологические свойства биологических ритмов не выяснены, хотя понятно, что они имеют в процессах жизнедеятельности живых организмов очень большое значение.

Природу биоритмов и их основные свойства удалось установить только в результате термодинамического анализа процессов, происходящих в биологических системах

2. Природа биоритмов. Анализ термодинамических свойств биологических систем

С середины 19 и практически до середины 20 века в результате теоретических работ физиков была разработана одна из фундаментальных наук – термодинамика.

К настоящему времени термодинамика содержит два основных раздела:

Равновесная термодинамика (термодинамика изолированных систем);

Неравновесная термодинамика (термодинамика открытых систем).

Первой работой в области неравновесной термодинамики в биологии является опубликованная в 1935 году книга Э.Бауэра “Теоретическая биология”, в которой был сформулирован “Всеобщий закон биологии”.

Основной задачей, которую поставил перед собой Э. Бауэр - определить основные термодинамические свойства живых веществ, за которое он принимал молекулы белков в особом, неравновесном состоянии.

Несмотря на целый ряд ошибочных предположений, принципиальным научным достижением Э. Бауэра в этой работе является неопровержимое доказательство того, что вопреки теории равновесной термодинамики живые организмы могут находиться только в устойчивом неравновесном термодинамическом состоянии.

Э. Бауэром был сформулирован “Всеобщий закон биологии” в следующей редакции:

“Все и только живые системы никогда не бывают в равновесии и исполняют за счет своей свободной энергии постоянную работу против равновесия, требуемого законами физики и химии при существующих внешних условиях”.

Э. Бауэром также был сформулирован “Принцип устойчивого неравновесия живых систем”:

“Для живых систем характерно именно то, что они за счет своей свободной энергии производят работу против ожидаемого равновесия”.

Значительно позже, в 50 - 70-х годах 20 века теория Э. Бауэра была полностью подтверждена работами И. Пригожина, Г. Хакена, и Р. Тома.

Как утверждает И. Пригожин: “…и биосфера в целом, и ее различные компоненты, живые или неживые, существуют в сильно неравновесных условиях. В этом смысле жизнь, заведомо укладывающаяся в рамки естественного порядка, предстает перед нами как высшее проявление происходящих в природе процессов самоорганизации ”.

Возвращаясь к работам Э. Бауэра, отметим, что, теоретически предположив наличие структур, обеспечивающих термодинамическое неравновесие, Э.Бауэром не было раскрыто, каким образом живые организмы постоянно поддерживают это неравновесное термодинамическое состояние.

Неравновесие означает, утверждает Э.Бауэр, что все структуры живых клеток на молекулярном уровне заранее заряжены "лишней", избыточной по сравнению с такой же неживой молекулой энергией, что выражается в неравенстве потенциалов, в созданном химическом или электрическом градиенте, тогда как в неживой замкнутой системе любые градиенты распределяются в соответствие с правилом энтропии равномерно.. Эту "лишнюю" энергию, существующую в живых клетках на любом уровне, Бауэр называет “структурной энергией” и понимает как деформацию, неравновесие в строении живой молекулы.

Для определения того, каким образом живыми системами обеспечивается состояние устойчивого неравновесия, проведем анализ термодинамических процессов, происходящих в живых организмах.

Как извесно из биологии, получение свободной энергии из продуктов питания и ее потребление для обеспечения жизнедеятельности живыми организмами осуществляется с помощью метаболизма – циклов обмена веществ, непрерывно происходящих в их клетках, и представляющих собой комплексы разнообразных биохимических реакций расщепления и синтеза веществ различными метаболическими путями.

Поскольку обмен веществ происходит циклами, то в клетках в соответствии с этими циклами происходят непрерывные периодические изменения концентраций веществ, участвующих в многочисленных биохимических реакциях. На рис.1. в качестве примера представлен график внутриклеточных колебаний концентрации кальция.

 Биологические ритмы как способ существования живой материи

Рис.1. График внутриклеточных колебаний кальция..

Как видно из рис.1, внутриклеточные колебания кальция представляют собой непрерывный периодический процесс.

Среди всех биохимических реакций особую роль играют реакции синтеза из молекул углеводов и жиров, содержащихся в питательных веществах, аденозинтрифосфата (АТФ), и его последующего расщепления, в результате чего выделяется энергия. Структура АТФ показана на рис.2.

 Биологические ритмы как способ существования живой материи

Рис.2. Структура АТФ

Как видно из рис.2, АТФ состоит из трех фосфатных групп, остатков азотистого основания аденина) и остатка сахара (рибозы). При разрыве фосфоангидридных и фосфоэфирной связей выделяется энергия.

Фосфатные группы могут быть постадийно отщеплены путем растворения в воде гидролиза) и образования ортофосфата или неорганического фосфата и аденозиндифосфата АДФ, а затем, после расщепления АДФ, и аденозинмонофосфата с выделением энергии на каждой стадии:

АТФ + Н2О→ АДФ + Фн + H+ + ΔG = -30 кДж/моль

АДФ + Н2О→АМФ + Фн + H+ + ΔG = -30 кДж/моль

АМФ + Н2О→аденозин + Фн + H+ + ΔG = -13 кДж/моль



Наш опрос
Как Вы оцениваете работу нашего сайта?
Отлично
Не помог
Реклама
 
Мнение авторов может не совпадать с мнением редакции сайта
Перепечатка материалов без ссылки на наш сайт запрещена