Дюкер
Курсовая работа Еронько Ирины 3016/I группы
МВ и ССО РФ
Санкт-Петербургский Государственный технический университет
Гидротехнический факультет, кафедра гидравлики
САНКТ-ПЕТЕРБУРГ
1996
Cодержание
1. Определение диаметра труб дюкера ( для случая , когда работает только одна труба дюкера)
2. Построение напорной и пьезометрической линии ( для случая , когда работает только одна труба дюкера )
3. Нахождение разности уровней воды в подводящем и отводящем участках канала ( для случая , когда работают обе трубы дюкера )
Литература
Свяжем уравнением Бернулли сечения 1-1 и 2-2 нашей системы . В общем виде оно выглядит следующим образом :
, ( 1.1 )
где , - превышения над плоскостью сравнения 0-0 сечения 1-1 и 2-2 соответственно , м ; , - гидродинамические давления в сечениях 1-1 и 2-2 соответственно , Па ; - удельный вес жидкости , Н/м3 ; , - коэффициенты ( коррективы ) кинетической энергии ( коэффициенты Буссинеска ) для сечения 1-1 и 2-2 соответственно ; , - средние скорости в сечениях 1-1 и 2-2 соответственно , м/с ;- ускорение свободного падения , м/с2 ; - полная потеря напора , м .
В нашем случае отдельные члены , входящие в это уравнение имеют следующие значения : ; ; ; ,
где - наибольшая допустимая разность уровней воды в подводящем и отводящем участках канала , м .
Подставляя наши данные в уравнение ( 1.1 ) , получаем :
( 1.2 )
Полная потеря напора может быть выражена иначе :
, ( 1.3 )
где - полный коэффициент сопротивления трубы; - скорость в трубе, м/с .
Подставим в выражение ( 1.2 ) выражение ( 1.3 ) , имеем :
( 1.4 )
и , следовательно ,
, ( 1.5 )
откуда
w , ( 1.6 )
где - расход жидкости в трубе , м3/с ; - коэффициент расхода ; w - площадь поперечного сечения трубы , м2 .
Полный коэффициент сопротивления трубы равен :
, ( 1.7 )
где - сумма местных коэффициентов сопротивления; - коэффициент сопротивления по длине .
В нашем случае имеют место следующие местные коэффициенты сопротивления :
, ( 1.8 )
где - коэффициент сопротивления входной решетки ; - коэффициент сопротивления при резком повороте ; - коэффициент сопротивления выхода .
Коэффициент сопротивления по длине равен :
, ( 1.9 )
где - коэффициент гидравлического трения ; - длина трубы , м ; - диаметр поперечного сечения трубы , м .
Подставляем формулы ( 1.8 ) и ( 1.9 ) в выражение ( 1.7 ) , имеем :
( 1.10 )
Найдем значения местных коэффициентов сопротивления :
а) коэффициент сопротивления входной решетки ищем по формуле Киршмера :
, ( 1.11 )
где - средняя скорость перед решеткой , м/с ; - потеря напора решетки , м ; - коэффициент, принимаемый по таблице 4-22 /1, с.202/ , в зависимости от формы поперечного сечения стержней решетки ( принимаем тип стержней - №1 , соответствующее ему значение = 2.34 ) ; , - толщина стержней и ширина просвета между ними соответственно ( принимаем =1 ) ; - угол наклона стержней решетки к горизонту ( принимаем = 90° ) .
По формуле ( 1.11 ) получаем :
;
б) коэффициент сопротивления при резком повороте ищется по формуле :
, ( 1.12 )
где и - эмпирические коэффициенты , принимаемые по таблице 4-6 и 4-7 /1, с.196/ , в зависимости от угла поворота трубы ( для заданного в задании угла поворота трубы = 45° ,= 1.87 и = 0.17 ) .
По формуле ( 1.12 ) получаем :
;
в) коэффициент сопротивления выхода принимаем равным 1 :
.
Диаметрпоперечного сечения трубы находится графическим способом , поскольку от величинызависят : площадь живого сечения w ; коэффициент гидравлического трения , ReD )
( где - относительная шероховатость и число Рейнольдса ReD =v ( - кинематический коэффициент вязкости , м2/с )) , а также некоторые коэффициенты местных сопротивлений . График зависимости диаметра поперечного сечения трубы от известного произведения строится по результатам вычислений , выполненных в таблице 1.1 .
Таблица 1.1 “ Параметры трубопровода “
D ,м Реклама
Мнение авторов может не совпадать с мнением редакции сайта
Перепечатка материалов без ссылки на наш сайт запрещена |