Каталог курсовых, рефератов, научных работ! Ilya-ya.ru Лекции, рефераты, курсовые, научные работы!

Кислородно-водородный ЖРД НМ60

Кислородно-водородный ЖРД НМ60

 Кислородно-водородный ЖРД НМ60Московский Государственный Технический Университет им. Н.Э. Баумана

Реферат

по КСМУ

на тему:

“Кислородно-водородный ЖРД НМ60”

   Преподаватель: Медведев В.Е.

Студент : Мельников Сергей

 Группа : М1-52                

— 1999 г. —

Исследования, проводимые в Европе в области ракет-носителей, показывают необходимость  разработки кислородно-водородного двигателя большой тяги для эксплуатации в 90-годы.

Для выявления потенциальных технических проблем, начиная с 1978 года проводились предварительные исследования кислородно-водородного ЖРД  с тягой 500 кН. В 1980 году было принято решение о разработке семейства РН Ариан-5 (рис.1), на которой  предполагается использование разгонных блоков первой ступени РН  Ариан-4 и нового кислородно-водородного блока Н60 (рис.2) на второй ступени. На рис.1 под каждой модификацией РН указана ее грузоподъемность (кг) и соответствующая орбита: LEO – низкая околоземная; GTO – переходная к стационарной.

Предварительные исследования по двигателю блока были начаты в  1981 году. Разработку планировалось начать в 1984 году, а закончить в 1991 году с тем, чтобы первый пуск Ариан-5 осуществить в 1993-1994 году.

Ниже рассматриваются  основные результаты предварительных исследований по созданию ЖРД НМ60.

ЖРД должен удовлетворять следующим основным требованиям:

а) удельный импульс в вакууме  - 4346 Нсек/кг;

б) номинальная тяга в вакууме – 800 кН; с возможностью дросселирования в полете до 600 кН;

в) перспективный уровень  тяги в вакууме – 1300 кН. Данная тяга необходима для использования ЖРД на первой ступени перспективных РН и достигается увеличением давления в камере сгорания. Таким образом, первоначальная конфигурация с тягой 800 кН разрабатывается в условиях минимального технического риска;

г) длина и максимальный диаметр не  более 4,0 и 2,4 м, соответственно, что  обеспечивает безопасное разделение ступеней в полете. В перспективе предполагается использовать выдвигаемый насадок сопла;

д)  критическим на входе в насос окислителя принято  избыточное давление 1,5 х  105  Па и в насос горючего 0,5 х 105  Па, что позволяет обойтись  без преднасосов;

е) ЖРД должен допускать многократное использование.

В процессе предварительных исследований рассматривались три схемы двигателя:

1) ЖРД с использованием на  турбине пара водорода, полученного в тракте охлаждения, принципиальная схема которого представлена на рис.3,а; 2) ЖРД с дожиганием генераторного газа  (рис.3в); 3) ЖРД без дожигания генераторного газа (рис.3б), где 1 – насос горючего; 2 – насос окислителя;  3 – турбина горючего; 4 – парообразный водород; 5 – турбина насоса окислителя; 6 – газогенератор.

Принципиальными преимуществами ЖРД первой из рассмотренных схем (рис.3,а) являются: простота, предельно низкая стоимость производства и относительной низкий уровень давления в насосах, необходимый для заданного давления в камере сгорания. Тем не менее, предварительные исследования показывают, что тепловой энергии, снятой со всей поверхности камеры сгорания, включая сопло, не достаточно для подачи топлива в камеру сгорания с давлением 100 х 105 Па.

На рис.3,в представлена схема ЖРД с дожиганием генераторного газа. Камера  сгорания в этом случае питается двумя отдельными турбонасосами, работающими  на газе, полученном в предкамере, объединенной с турбонасосом жидкого водорода. Для данной схемы ЖРД рассматривались конфигурации турбонасосов, подобные ЖРД ТКА Space Shuttle, но без преднасосов, что объясняется требованиями к двигателю. Камера сгорая имеет регенеративное охлаждение, для чего используется 20% топлива, а 6% его идет на охлаждение сопла с последующим сбросом горячего  пара.

На рис.4 приведен общий в ид ЖРД НМ60 с дожиганием генераторного газа (А) и без дожигания (В).

На рис.5 представлена принципиальная схема ЖРД без дожигания  генераторного газа, где 1 – наддув окислителя; 2 – жидкий кислород; 3 – турбонасос окислителя; 4 – магистраль гелия; 5 – система продувки магистрали жидкого кислорода; 6 – система продувки магистрали жидкого водорода; 7 – жидкий  водород; 8 – турбонасос горючего; 9 – наддув бака горючего; 10 – клапан регулирования соотношения компонентов; 11 – пиротехническая система запуска и раскручивания турбины; 12 – газогенератор; 13 – клапан продувки магистрали жидкого кислорода; 14 – клапан продувки магистрали жидкого водорода; 15 – система запуска; 16 – клапаны управления впрыском компонентов в газогенератор; 17 – главный клапан окислителя;  18 – главный клапан горючего; 19 – сопло, охлаждаемое жидким водородом с последующим его сбросом. Конструкция и технология изготовления  камеры сгорания данной схемы, как и  схемы с дожиганием генераторного газа, аналогичны  маршевому двигателю ТКА Space Shuttle (SSME). Основные характеристики двух анализируемых схем ЖРД приведены в табл.1, где также для сравнения даны характеристики маршевого ЖРД ТКА Space Shuttle (SSME). Можно видеть, что для обеих схем уровни давления ниже, чем у SSME.

Таблица 1. Сравнение вариантов ЖРД НМ60 и ЖРД SSME



Наш опрос
Как Вы оцениваете работу нашего сайта?
Отлично
Не помог
Реклама
 
Мнение авторов может не совпадать с мнением редакции сайта
Перепечатка материалов без ссылки на наш сайт запрещена