Каталог курсовых, рефератов, научных работ! Ilya-ya.ru Лекции, рефераты, курсовые, научные работы!

Об алгоритмах самоорганизации в задаче синтеза информационных технологий обработки сигналов

Об алгоритмах самоорганизации в задаче синтеза информационных технологий обработки сигналов

Об алгоритмах самоорганизации в задаче синтеза информационных технологий обработки сигналов

Леонид Соломонович Файнзильберг, к.т.н.

Показано, что в условиях ограниченной априорной информации синтез ИТ обработки сигналов должен базироваться на двух этапах: конструировании потенциально полезных признаков и самоорганизации моделей. Приведены практические результаты, подтверждающие эффективность использования алгоритмов самоорганизации при решении сложных прикладных задач.

Введение.

Предложенный А.Г. Ивахненко индуктивный метод самоорганизации моделей сложных систем (метод МГУА) достаточно подробно описан в работах [1-4]. Автор данной статьи относится к той многочисленной группе исследователей, которые, в силу своей профессиональной деятельности, так или иначе нуждаются в использовании методов построения зависимостей по экспериментальным данным. Именно поэтому возникло острое желание поделиться своими соображениями о роли и месте алгоритмов самоорганизации МГУА в задаче синтеза информационных технологий обработки сигналов, взглянув на эти алгоритмы со стороны потребителя. Другими словами, исполнить роль одного из “внешних критериев”, да простит меня школа А.Г. Ивахненко за столь вольное толкование известного термина.

Следует заметить, что, помимо реализма, в среде потенциальных потребителей алгоритмов МГУА, бытует как необоснованный пессимизм, так и неоправданный оптимизм (рис. 1). Более того, чрезмерные оптимисты нередко переходят в противоположный лагерь только из-за первых неудач, полученных при использовании конкретного алгоритма для разрешения собственных проблем.

Разумеется, такие противоположные взгляда неверны как любые крайности и возникают, главным образом, из-за недопонимания самой сути алгоритмов МГУА. Понятно, что истина лежит где-то между этими суждениями, о чем неоднократно говорили сами разработчики алгоритмов МГУА.

 Об алгоритмах самоорганизации в задаче синтеза информационных технологий обработки сигналов

Рис.1. Вульгаризация идей самоорганизации моделей

Целью данной статьи является попытка продемонстрировать реалистичный взгляд на возможность использования алгоритмов МГУА при синтезе прикладных информационных технологий (ИТ) обработки сигналов различной физической природы и на примерах решения практических задач показать достоинства данного метода.

Задача синтеза ИТ обработки сигнала. Под информационной технологией будем понимать [5] совокупность методов и средств, объединенных в технологическую цепочку, на вход которой поступают исходные данные (сырье), а на выходе образуется информационный продукт, подготовленный в соответствии с потребностями конкретных пользователей в той или иной предметной области (рис. 2).

 Об алгоритмах самоорганизации в задаче синтеза информационных технологий обработки сигналов

Рассмотрим следующую задачу. Имеется некоторый технический или биологический объект, о состоянии Z которого необходимо получить количественную и/или качественную информацию (рис. 3). В первом случае пользователя интересуют значения интервальных переменных - компонент вектора  Об алгоритмах самоорганизации в задаче синтеза информационных технологий обработки сигналов, а во втором – значение категориальной переменной  Об алгоритмах самоорганизации в задаче синтеза информационных технологий обработки сигналов, характеризующей принадлежность текущего состояния объекта к одному из классов заданного множества  Об алгоритмах самоорганизации в задаче синтеза информационных технологий обработки сигналов.

 Об алгоритмах самоорганизации в задаче синтеза информационных технологий обработки сигналов

Рис.3. Описание состояния объекта

Существуют примеры задач, когда определение параметра Z не представляет особого труда: имеются достаточно надежные средства измерения (датчики и индикаторы), которые позволяют непосредственно получить интересующую пользователя информацию о состоянии объекта. Однако довольно часто на практике встречаются задачи, когда непосредственное определение Z невозможно. Например, агрессивность и высокая температура среды препятствует созданию датчиков для непосредственного определения содержания углерода и других легирующих элементов в расплавленном металле. Невозможно также при массовых обследованиях определять состояние внутренних органов человека на основе прямых (инвазивных) методов диагностики, например метода коронарографии для диагностики заболеваний сердечно-сосудистой системы: этот метод достаточно дорогой и, самое главное, небезопасный для обследуемого.

Аналогичные примеры достаточно часто встречаются в технике, медицине и других областях приложения.

Решения подобных задач является главной целью ИТ для косвенного контроля параметров и диагностики состояния объекта.

Какую же рабочую гипотезу разумно положить в основу синтеза таких технологий?

Предположим, что при фиксированном значении Z на выходе объекта порождается нестационарное скалярное или векторное поле (электрическое, магнитное, температурное и т.п.). Будем считать, что величина этого поля определяется функцией

 Об алгоритмах самоорганизации в задаче синтеза информационных технологий обработки сигналов, (1)

зависящей от параметра Z, где  Об алгоритмах самоорганизации в задаче синтеза информационных технологий обработки сигналов- время,  Об алгоритмах самоорганизации в задаче синтеза информационных технологий обработки сигналов- точка пространства,  Об алгоритмах самоорганизации в задаче синтеза информационных технологий обработки сигналов-величина поля в этой точке. При измерении поля (1) в фиксированной точке  Об алгоритмах самоорганизации в задаче синтеза информационных технологий обработки сигналовфункция  Об алгоритмах самоорганизации в задаче синтеза информационных технологий обработки сигналоввырождается в функцию времени  Об алгоритмах самоорганизации в задаче синтеза информационных технологий обработки сигналов. Если же датчики для измерения поля (1) установить в нескольких точках  Об алгоритмах самоорганизации в задаче синтеза информационных технологий обработки сигналов, то (1) можно представить совокупностью функций времени

 Об алгоритмах самоорганизации в задаче синтеза информационных технологий обработки сигналов, (2)

представляющих собой сигналы на выходе датчиков.

Для удобства будем записывать (2) в виде одного соотношения

 Об алгоритмах самоорганизации в задаче синтеза информационных технологий обработки сигналов, (3)

понимая под  Об алгоритмах самоорганизации в задаче синтеза информационных технологий обработки сигналовскалярную функцию времени, если сигнал измеряется в одной точке, или вектор-функцию Об алгоритмах самоорганизации в задаче синтеза информационных технологий обработки сигналов, если измерение поля производится в нескольких точках.

Поскольку мы предполагаем, что сигнал (3) зависит от состояния Z, то с формальной точки зрения ИТ, вообще говоря, должна обеспечивать решение обратной задачи: требуется оценить неизвестное значение Z по результатам наблюдения сигнала  Об алгоритмах самоорганизации в задаче синтеза информационных технологий обработки сигналовна фиксированном отрезке наблюдения  Об алгоритмах самоорганизации в задаче синтеза информационных технологий обработки сигналов(рис. 4).

 Об алгоритмах самоорганизации в задаче синтеза информационных технологий обработки сигналов

Следует, однако, заметить, что на практике функция Об алгоритмах самоорганизации в задаче синтеза информационных технологий обработки сигналов чаще всего неизвестна. Обычно конструктору ИТ приходится сталкиваться с достаточно сложными объектами и процессами, а знания в рассматриваемой предметной области слабо структурированы и формализации поддаются лишь отдельные фрагменты общей постановки [6]. Для упрощения изучения физических закономерностей часто рассматривают "идеализированные" условия, в результате чего полученные таким способом модели приводит к значительным погрешностям.

И хотя есть все основания полагать, что модель вида (1) существует, ее получение только на основе физических представлений затруднительно, а иногда и просто невозможно.

Так, например, хорошо известно, что электрическое и магнитное поле сердца, зарегистрированные в течение кардиоциклов, несут информацию о состоянии сердечно-сосудистой системы живого организма [7], однако до сего времени не получены и вряд ли будут получены в ближайшем будущем “хорошие” модели, адекватно описывающие процесс порождения таких полей.

Есть все основания считать, что температурное поле, образуемое внутри и вокруг слитка кристаллизующегося металла, несет информацию о его механических свойствах и химическом составе. В то же время, согласно [8], процесс кристаллизации представляет собой теснейшее переплетение физико-химических (зарождение и рост кристаллов, диффузия элементов, коагуляция примесей), гидродинамических (движение расплава внутри слитка) и тепловых явлений. Сложность этих процессов препятствует построению модели вида (1), адекватно описывающей формирования температурного поля в процессе кристаллизации.

Перечень подобных примером можно было бы продолжить.

Поэтому модель (1) можно рассматривать лишь как рабочую гипотезу, позволяющую обосновать принципиальную возможность оценки параметра состояния объекта по наблюдаемым сигналам.

По-видимому, к задаче синтеза ИТ обработки сигналов на современном этапе развития науки следует подходить не столько с позиций математической проблемы, требующей формального разрешения, а как к научной методологии решения конкретных задач. При этом уместно напомнить, что сам термин “технология” происходит от греческого слова “téchnë” (искусство, мастерство, умение), а задача технологии как науки состоит в выявление закономерностей с целью определения и использования на практике наиболее эффективных и экономных производственных процессов [9].

Вполне понятно, что алгоритмы самоорганизации МГУА, ориентированные на структурную и параметрическую идентификацию моделей по экспериментальным данным, являются одним из элементов таких технологий. Главным достоинством алгоритмов МГУА, отличающим их от других методов идентификации, является разделение имеющихся наблюдений на две выборки: обучающую, по которой производится идентификация моделей заданного класса структур, и контрольную, обеспечивающую селекцию моделей оптимальной сложности с точки зрения некоторого внешнего критерия.

Роль алгоритмов самоорганизации в ИТ обработки сигналов. Рассмотрим три объекты разной физической природы - расплав железоуглеродистого металла, сердце человека и биологическую жидкость (кровь, слюна и т.п.). Несмотря на различие физической природы этих объектов, для них правомерна общая рабочая гипотеза (1): объекты порождают сигналы, несущие ценную информацию об их состоянии (рис. 5).

 Об алгоритмах самоорганизации в задаче синтеза информационных технологий обработки сигналов

Рис.5. Примеры практических задач

Остановимся вначале на первом примере. Известно [10], что всякое кристаллическое тело данного химического состава имеет вполне определенную температуру плавления (затвердевания). Именно этот закономерный факт и был положен нами в основу ИТ “ТЕРМОГРАФ” для косвенного контроля химического состава и прогнозирования механических свойств литейных чугунов [11]. Естественно, что при реализации такой технологии нам пришлось заниматься идентификацией моделей, связывающих выходные параметры с признаками термограммы.

Принимая во внимание цель данной статьи, именно об этой стороне задачи стоит поговорить более подробно, поскольку именно на этом примере можно продемонстрировать “вульгаризацию” идей МГУА, при которой необоснованный оптимизм может привести к неоправданному пессимизму.

Для этого предельно упростим задачу, предположив, что конечного пользователя ИТ (металлурга) интересует только один технологический параметр – процентное содержание углерода в металле  Об алгоритмах самоорганизации в задаче синтеза информационных технологий обработки сигналов.

Обратимся к рис. 6, в левой части которого в координатах температура T (температура) – C (содержание углерода) показан фрагмент известной диаграммы состояния Fe-C сплава. На диаграмме имеется две линии - ликвидуса и солидуса. Выше линии ликвидуса металл находится в жидком состоянии (область L), ниже линии солидуса - в твердом состоянии (область S), а между этими линиями - в переходном состоянии (область L+S).

Как видно из рисунка, линия ликвидуса не параллельна оси температур, а значит при изменении содержания углерода изменяется температура начала кристаллизации металла (температура ликвидуса TL) - чем выше содержание углерода, тем при более низкой температуре начинается процесс кристаллизации расплава. Поэтому неизвестное содержание углерода C можно определить по температуре ликвидуса TL

Однако сталь является сложным по химическому составу сплавом и, помимо углерода, в ней имеется еще и целый ряд других примесей, таких как марганец, кремний, фосфор, сера и др., также влияющих на температуру ликвидуса. Поэтому зависимость между содержанием углерода и температурой ликвидуса, вообще говоря, отличается от теоретической зависимости, вытекающей из диаграммы состояния Fe-C сплава.

 Об алгоритмах самоорганизации в задаче синтеза информационных технологий обработки сигналов

Рис.6. Иллюстрация идеи косвенного контроля С

В то же время оказалось, что если воспользоваться простейшей моделью в виде линейного уравнения регрессии

 Об алгоритмах самоорганизации в задаче синтеза информационных технологий обработки сигналов, (4)

построенной для условий конкретного предприятия, то неизвестное содержание углерода можно косвенно оценить по температуре ликвидуса с достаточно высокой точность (порядка 0.02 абс. % С).

Разумеется, такая сравнительно высокая точность может быть достигнута только в той случае, когда будет правильно определена сама температура ликвидуса  Об алгоритмах самоорганизации в задаче синтеза информационных технологий обработки сигналов. Однако возникает вопрос: каким образом определить температуру ликвидуса?

Природа пошла навстречу в разрешении этой проблемы. Дело в том, что в момент начала кристаллизации происходит экзотермическая реакция - выделения скрытой теплоты кристаллизации. Поэтому, если зарегистрировать процесс охлаждения расплава (см. правую часть рис. 6), то на графике процесса  Об алгоритмах самоорганизации в задаче синтеза информационных технологий обработки сигналов(термограмме) при достижении температуры ликвидуса появляется своеобразный фрагмент в виде температурной остановки (площадки). Обнаружив такой информативный фрагмент термограммы можно определить температуру  Об алгоритмах самоорганизации в задаче синтеза информационных технологий обработки сигналов, а затем и процентное содержание углерода по модели (4).

Предположим теперь, что нам известна лишь первая часть описанных выше закономерностей, т.е. только гипотеза о том, что термограмма несет информацию об интересующем нас параметре  Об алгоритмах самоорганизации в задаче синтеза информационных технологий обработки сигналов, но неизвестно каким образом. Можно ли в этих условиях воспользоваться идеями самоорганизации для восстановления зависимости (4) по экспериментальным данным ?

На первый взгляд может показаться, что такую задачу имеет простое решение в классе алгоритмов самоорганизации, но в этом как раз и состоит “вульгаризация” идеи МГУА!

Пусть в нашем распоряжении имеется выборка термограмм, зарегистрированных для W проб металла, и для каждой такой пробы на основании результатов химического анализа известно точное значение содержания углерода C1,…,CW . Будем считать, что каждая из W термограмм представлена своими дискретными значениями  Об алгоритмах самоорганизации в задаче синтеза информационных технологий обработки сигналов.

Поскольку в векторах  Об алгоритмах самоорганизации в задаче синтеза информационных технологий обработки сигналовсодержится вся доступная нам информация о термограмме, то можно считать значения  Об алгоритмах самоорганизации в задаче синтеза информационных технологий обработки сигналовпотенциальными регрессорами, для которых известно точное значение отклика  Об алгоритмах самоорганизации в задаче синтеза информационных технологий обработки сигналов. Другими словами считать, что в нашем распоряжении имеется выборка, содержащая W точек наблюдений, образующих  Об алгоритмах самоорганизации в задаче синтеза информационных технологий обработки сигналовматрицу регрессоров и W-мерный вектор отклика (см. таблицу 1).

Казалось бы, имея такую выборку, легко можно восстановить закономерность (4), задав класс базисных функций в виде всевозможными линейных структур

 Об алгоритмах самоорганизации в задаче синтеза информационных технологий обработки сигналов

Таблица 1. Гипотетическая выборка наблюдений



Наш опрос
Как Вы оцениваете работу нашего сайта?
Отлично
Не помог
Реклама
 
Мнение авторов может не совпадать с мнением редакции сайта
Перепечатка материалов без ссылки на наш сайт запрещена