Питание как важнейшая потребность человека
Введение
Эта работа создана с целью ознакомления читателя с основными моментами проблемы питания как важнейшего процесса, обеспечивающего существование всего живого на Земле, в том числе Homo Sapiens. В доступной и популярной форме излагаются важнейшие сведения о питательных веществах, их элементарной классификации и их физиологической роли в организме человека. Доступно представлены главные моменты обмена веществ организма человека и затронуты вопросы физиологии пищеварения и всасывания пищевых веществ, межуточного их обмена и образования и выведения конечных продуктов метаболизма. Затронуты вопросы, касающиеся роли витаминов в организме человека и основных проявлений болезней витаминной недостаточности.
Кратко, обобщенно и популярно изложен взгляд современной диетологии и гигиены питания на проблему питания в виде «Концепции рационального питания», которая принята и используется большинством специалистов для профилактики и лечения самых различных заболеваний, не только тех, которые вызваны нарушениями питания, но и теми, которые непосредственно не связаны с пищевым режимом и качеством продуктов. Представлены некоторые наиболее распространенные из современных теорий питания и приведен их краткий анализ и взгляды официальной науки.
В тексте цифрами отмечены медицинские, физиологические и общебиологические термины, значение которых может быть не известно читателю и в конце реферата приведены краткие объяснения этих терминов.
Общие сведения о питании организма как части его обмена веществ
Питание организма является неотъемлемой частью процесса его жизнедеятельности. Питание, как часть обмена веществ между организмом и средой, относится наряду с другими признаками (раздражимость, способность к размножению, росту, развитию, активной регуляции своего состава и функций, к различным формам движения, приспособляемость к среде и т. д.) к главным критериям жизнедеятельности и существования любого организма, начиная от прокариотических – безъядерных – бактериальных клеток и заканчивая наиболее высокоорганизованной группой млекопитающих.
Определение понятия «питание» разными авторами формулируется различно. Наиболее строгое и точное определение можно сформулировать следующим образом: питание есть поступление в организм растений и животных и усвоение ими веществ, необходимых для восполнения энергетических затрат, построения и возобновления тканей.
Посредством питания, как составной части обмена веществ, осуществляется связь организма со средой. Способ питания животных определяется главным образом средой обитания и характером доступной пищи. Недостаточное и избыточное питание приводит к нарушениям обмена веществ.
Процесс питания неразрывно связан с универсальным процессом жизнедеятельности организма, который обозначается в физиологии как «обмен веществ и энергии» или просто «обмен веществ». Поскольку питание есть часть этого процесса, его (питание) необходимо рассматривать исключительно в контексте общего обмена веществ организма.
Обмен веществ (метаболизм) – совокупность всех химических изменений и всех видов превращений веществ и энергии в организмах, обеспечивающих развитие, жизнедеятельность и самовоспроизведение организмов, их связь с окружающей средой и адаптацию к изменениям внешних условий. Основу обмена веществ составляют взаимосвязанные процессы анаболизма и катаболизма, направленные на непрерывное обновление живого материала и обеспечение его необходимой энергией. Анаболические и катаболические процессы осуществляются путем последовательности химических реакций с участием ферментов. Для каждого вида организмов характерен особый, генетически детерминированный тип обмена веществ, зависящий от условий его существования. Интенсивность и направленность обмена веществ в клетке обеспечивается путем сложной регуляции синтеза и активности ферментов, а также в результате изменения проницаемости биологических мембран. В организме человека и животных имеет место гуморальная регуляция[1] обмена веществ, координируемая центральной нервной системой через посредство нервных импульсов. Любое заболевание сопровождается нарушениями обмена веществ той или иной степени выраженности; генетически обусловленные нарушения обмена веществ служат причиной многих наследственных болезней.
Питательные вещества
Общие сведения о питательных веществах и их классификация
Для питания животные, в том числе и человек, используют питательные вещества (пищевые вещества), которые представляют собой химические соединения различной природы и степени сложности. Энергия химических связей молекул питательных веществ рационально преобразуется и используется организмом в процессе межуточного обмена (см. ниже) в качестве энергетического материала, необходимого организму для восполнения энергетических затрат на основной обмен1[2] и на совершение полезной работы (физическая работа, умственная деятельность и т. д.). В современной физиологии питания питательные вещества, используемые человеком и животными, в зависимости от принадлежности к той или иной группе органических химических соединений разделяют на три класса. Общая классификация питательных веществ по признаку химической принадлежности выглядит следующим образом:
Триглицериды (липиды, жиры)
ненасыщенные
насыщенные
полисахариды
олигосахариды
моносахариды
гексозы
пентозы
По степени сложности молекул питательных веществ их иногда целесообразно разделять на:
относительно простые вещества (простые углеводы – моно- и олигосахариды и липиды)
биополимеры (полисахариды – крахмал, гликоген, целлюлоза (клетчатка) и белки)
Пищевые вещества содержат большое количество энергии, которая освобождается в процессе обмена веществ. Выделяют три основных последовательно совершающихся этапа обмена веществ: пищеварение и всасывание, межуточный обмен, образование конечных продуктов (метаболитов).
Расщепление белков, жиров и углеводов осуществляется специфическими ферментами гидролазами до аминокислот, глицерина и жирных кислот, гексоз (глюкозы, фруктозы, галактозы). На этом этапе обмена пищевые вещества теряют свою видовую специфичность. В энергетическом отношении гидролиз их малоэффективен, ибо при распаде белков и углеводов выделяется 0,6%, а при гидролизе жиров лишь 1% всей энергии, содержащейся в пищевых веществах.
Межуточный обмен веществ включает биосинтез специфических для данного вида белков, липидов и углеводов и превращения аминокислот, гексоз, пентоз, жирных кислот и глицерина в ряд общих продуктов, подвергающихся трансформации в цикле трикарбоновых кислот. Глюкоза и свободные жирные кислоты являются основными источниками энергии для любой клетки.
При межутчном обмене энергия пищевых веществ выделяется и аккумулируется в макроэргах только в результате гликолиза. Так, при гликолитическом распаде глюкозы до пировиноградной и молочной кислот образуются 4 молекулы АТФ, но, учитывая, что в процессе гликолиза используется 2 молекулы АТФ[3] , в целом выход АТФ составляет две молекулы.
Основная масса энергии освобождается в цикле трикарбоновых кислот[4] . При этом 60-70% энергии питательных веществ аккумулируется в виде химических связей АТФ. Образование АТФ связано с затратами энергии. Тем не менее, 30-40% энергии питательных веществ превращается в теплоту, которая используется для поддержания температурного гомеостаза, но безвозвратно теряется организмом. Она получила название первичной теплоты. В свою очередь, АТФ распадается на АДФ и неорганический фосфор с выделением 7,2 ккал тепла, получившего название вторичной теплоты. В конечном итоге вся энергия пищевых веществ переходит в теплоту. Реакции образования АТФ резко активируются, если возрастает потребность в энергии, что наиболее характерно для мышечной и нервной систем.
Нарушения энергетического обмена наблюдаются при гипоксии, инфекционных процессах, в условиях избыточного накопления некоторых гормонов, а так же в эксперименте при введении в организм 2,4-динитрофенола, антимицина, амитала и других веществ.
Изменение энергетического обмена может происходить в результате усиления окислительно-восстановительных процессов при лихорадке, охлаждении и перегревании или же снижение их при гипоксии, кастрации, отравлении цианидами. Расстройства энергетического обмена имеют серьезные последствия для организма из-за дефицита АТФ и нарушении вследствие этого синтеза веществ и возникновении дистрофических процессов.
У человека суточная потребность в основных питательных веществах и калориях для мужчины (в зависимости от возраста и интенсивности труда) составляет:
белки – 82-118 г, (в т. ч. животные 45-65 г)
жиры – 93-158 г
углеводы – 344-602 г
Нормальная энергетическая ценность (калорийность) потребляемой пищи в зависимости от различных условий варьируется от 10,66 до 17,97 кДж (2550-4300 ккал). У женщин в связи с менее интенсивным обменом веществ и меньшей массой тела соответствующие показатели на 15% ниже приведенных величин.
Белки. Белковый обмен и биосинтез белка
Общие сведения.
Белки[5] представляют собой природные высокомолекулярные органические соединения (биополимеры), построенные из остатков 20 аминокислот, которые соединены пептидными связями в длинные цепи линейных полимеров. Белковые молекулы могут содержать в себе от нескольких тысяч до нескольких миллионов аминокислотных остатков. Во всех организмах белки играют исключительно важную роль: они участвуют в построении клеток и тканей, являются биокатализаторами (ферменты), гормонами, дыхательными пигментами (гемоглобины), защитными веществами (иммуноглобулины) и др. Иными словами, жизнь на Земле протекает в условиях прежде всего белкового обмена. Ф. Энгельс так определяет жизнь: «Жизнь есть способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой, причем с прекращением этого обмена веществ прекращается и жизнь». Молекулы всех белков построены из четырех «жизненных» элементов: водорода, углерода, кислорода и азота. Существование небелковых форм жизни на Земле принципиально невозможно, хотя теоретически они могут существовать но, разумеется, в совершенно иных, чем на нашей планете условиях. Математически подсчитано, что общее количество возможных вариаций белковых соединений составляет порядка 10300. Этим объясняется фактическая неисчерпаемость жизненных форм, которые могут возникать в процессе органической эволюции живого мира.
Как было сказано выше, белковая молекула представляет собой полимер, мономерами (составными звеньями) которого являются аминокислоты. Аминокислоты суть класс органических соединений, содержащих карбоксильные (-COOH) и аминогруппы (-NН2); в химическом отношении они обладают свойствами и кислот, и оснований. Аминокислоты участвуют в обмене азотистых веществ всех организмов (исходное соединение при биосинтезе гормонов, витаминов, медиаторов, пигментов, пуриновых и пиримидиновых оснований, алкалоидов и др.). Природных аминокислот свыше 150. Однако только 20 важнейших аминокислот служат мономерными звеньями, из которых построены все белки (порядок включения аминокислот в них определяется генетическим кодом). Большинство микроорганизмов и растения синтезируют необходимые им аминокислоты; животные и человек не способны к образованию т. н. незаменимых аминокислот, коих существует ровно восемь[6] . Для человека незаменимые аминокислоты - это: валин, лейцин, изолейцин, треонин, метионин, фенилаланин, триптофан, лизин и в некоторых случаях аргинин. Все незаменимые аминокислоты поступают в организм исключительно в составе пищевого животного белка (см. ниже). Отсутствие или недостаток незаменымых аминокислот приводит к грубым нарушениям жизнедеятельности организма, остановке роста, падению массы тела, нарушениям обмена веществ, при острой недостаточности – к гибели организма.
Белковый обмен.
Известно, что белки подвергаются гидролизу под влиянием ферментов экзо- и эндопептидаз, образующихся в желудочно-кишечном тракте (желудок, поджелудочная железа и кишечник). Эндопептидазы, образующиеся в желудке и входящие в состав желудочного сока, вызывают расщепление белка в средней его части до альбумоз и пептонов. Экзопептидазы, образующиеся в поджелудочной железе и тонкой кишке, обеспечивают отщепление концевых участков белковых молекул и продуктов их распада до аминокислот, всасывание которых происходит в тонкой кишке при наличии АТФ.
Наблюдения показывают, что за три недели в организме взрослого человека белки обновляются наполовину путем использования аминокислот, поступающих с пищей и за счет распада и ресинтеза. По данным Мак-Мюррей (1980), при азотистом равновесии ежедневно синтезируется 500 г белков, т. е. в 5 раз больше, чем поступает с пищей. Это может быть достигнуто при повторном использовании аминокислот, в том числе и образующихся при распаде белков в организме.
Нарушение гидролиза белков могут быть вызваны многими причинами: воспаление, опухоли желудка, кишечника, поджелудочной железы; резекции желудка и кишечника; общие процессы типа лихорадки, перегревания и гипотермии (охлаждения); при усилении кишечной перистальтики[7] .
Нерасщепленные белки поступают в толстую кишку, где под влиянием микрофлоры начинаются процессы гниения, приводящие к образованию активных аминов и ароматических соединений. Эти токсические вещества обезвреживаются в печени путем соединения с серной кислотой. При всасывании нерасщепленного белка возможна аллергизация организма.
Нарушения расщепления и всасывания белков, так же как и недостаточное поступление белков в организм, ведут к развитию белкового голодания, нарушению синтеза белка, анемии[8] , гипопротеинемии[9] , склонности к отекам, недостаточности иммунитета. В условиях белкового голодания активируется ряд компенсаторных механизмов, в результате чего происходит мобилизация белка из тканей, его расщепление и выведение продуктов его обмена. Формируется отрицательный азотистый баланс, то есть прогрессирующая потеря азота, как основного компонента белковых молекул. Мобилизация белка является одной из причин дистрофии, в том числе в мышцах, лимфоидных органах, желудочно-кишечном тракте, что усугубляет нарушение расщепления и всасывания белков (замыкается порочный круг).
При белковом голодании и увеличении синтеза некоторых гормонов активируются тканевые ферменты и распад белка прежде всего в поперечно-полосатой мускулатуре, лимфоидных узлах и тканях желудочно-кишечного тракта. Образующиеся аминокислоты выделяются в избытке с мочой. Изменения проявляются в виде депрессии иммунитета, повышенной склонности к инфекционным процессам, дистрофии различных органов (скелетной мускулатуры, сердца, лимфоузлов, ЖКТ).
Образование и выведение конечных продуктов белкового обмена.
В результате превращений аминокислот образуется аммиак, который обладает сильно выраженным токсическим эффектом, особенно для клеток нервной системы. В организме сформирован ряд компенсаторных процессов, обеспечивающих связывание аммиака. В печени из аммиака образуется мочевина, которая является сравнительно безвредным продуктом. В клетках аммиак связывается с глютаминовой кислотой с образованием глютамина. В почках аммиак соединяется в ионом водорода и в виде солей аммония выводится с мочой.
Конечные продукты азотистого обмена выделяются из организма различными путями: мочевина и аммиак – преимущественно с мочой; вода – с мочой, через легкие и потоотделением; СО2 – преимущественно через легкие и в виде солей с мочой и потом. Эти небелковые азотсодержащие вещества, составляют остаточный азот. В норме его содержание в крови не должно превышать 20-40 мг% (14,3-28,6 ммоль/л). Нарушения образования мочевины и выделения азотистых продуктов сопровождаются расстройствами водно-солевого баланса, нарушением функций органов и систем организма, особенно нервной системы. Возможно развитие комы.
Биосинтез белка
Белковые молекулы в виду их высочайшей видо- и индивидуальной для данной особи специфичности представляют собой чужеродные для организма вещества. Повторное внутривенное введение животным и человеку чужеродного белка приводит к его гибели вследствие сильнейшей аллергической реакции (анафилактический шок). Поэтому белок, поступающий в организм должен быть расщеплен на более простые и неспецифичные для данной особи, более универсальные вещества. Этими веществами являются его мономеры – аминокислоты. Под влиянием пищеварительных ферментов белковые молекулы, поступающие в составе пищи, фрагментируются (см. выше), благодаря чему становится возможным и происходит их усвоение, всасывание в кровь и включение в белковый обмен. Попадая в конечные пункты назначения – клетки – аминокислоты включаются в универсальный для всего живого мира процесс – биосинтез белка[10] . Вследствие этого процесса образуются специфические только для данной особи эндогенные (внутренние) белки, которые теперь могут быть использованы организмом в качестве различных биологически-активных веществ или строительного материала в процессе непрерывного обновления клеток организма. Как известно, биосинтез белка происходит под контролем со стороны дезоксирибонуклеиновой кислоты (ДНК), входящей в состав наследственного аппарата клетки. Последовательность нуклеотидов, образующих цепь ДНК согласно принципу комплементарности [11] определяет последовательность нуклеотидов информационной рибонуклеиновой кислоты (иРНК). В свою очередь, структура иРНК определяет структуру рибосомальной РНК[12] (рРНК), которая является конечным пунктом реализации наследственной информации на стадии биосинтеза белка. Непосредственно на матрице рРНК при участии тРНК (транспортной РНК) происходит окончательная сборка протеиновой молекулы. Аминокислоты вновь образованной белковой молекулы располагаются в строгом порядке, согласно распределению триплетов[13] (см. таблицу 1) в иРНК.
Таким образом, последовательность аминокислот в синтезированной внутри организма молекуле протеина определяется первичной структурой ДНК через посредство комплекса рибонуклеиновых кислот (иРНК, рРНК и тРНК). Весь процесс сборки белка сопровождается специализированными ферментами (ДНК- и РНК-полимеразами, транскриптазами, рестриктазами, лигазам и т. д.), которые выполняют роль «обслуживающего персонала» и осуществляют обратную связь в процессе биосинтеза белка.
ДНК (участок двойной спирали) Реклама
Мнение авторов может не совпадать с мнением редакции сайта
Перепечатка материалов без ссылки на наш сайт запрещена |