Каталог курсовых, рефератов, научных работ! Ilya-ya.ru Лекции, рефераты, курсовые, научные работы!

Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков.

Выпускная квалификационная работа (Дипломный проект)

Подготовил студент ЗФ, 6-ого курса, группы 1801, Полукаров А.Н.

Самарский государственный технический университет

Кафедра: “Электромеханика и нетрадиционная энергетика”

Самара 2006г.

Цель разработки

Рассчитать и сконструировать двухскоростной асинхронный двигатель с полюсопереключаемой обмоткой статора.

Исходные данные

Частоты вращения: большая  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков при  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

меньшая  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков при  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

Схема соединения фаз обмотки статора: Y/YY

Исполнение: а) по степени защиты – IP44

б) по сист. охлаждения – ICO141

в) по способу монтажа – IM20

Номинальное напряжение: Uном = 220В

Частота сети: f = 50Гц

Основные источники для разработки

«Проектирование электрических машин», под ред. Копылова.

«Обмотки электрических машин», Г.К. Жерве

«Технология производства асинхронных двигателей», В.Г. Костромин

«Шумы и вибрация электрических машин», Н.Г. Шубов

Содержание расчётно-пояснительной записки

Введение.

Электромагнитный расчёт.

Тепловой расчёт.

Механический расчёт вала.

Технология изготовления обмоток статора.

Вопросы стандартизации.

Вопросы экологии. Шум и вибрация электрических машин.

Экономическая часть.

Вопросы охраны труда.

Введение

Асинхронные двигатели в силу ряда достоинств (относительная дешевизна, высокие энергетические показатели, простота обслуживания) являются наиболее распространёнными среди всех электрических машин. Они – основные двигатели в электроприводах практически всех промышленных предприятий.

Рассматриваемый в данной дипломной работе двигатель – многоскоростной, а именно – двухскоростной. Многоскоростные двигатели обычно выполняются с короткозамкнутым ротором. Асинхронные двигатели с короткозамкнутым ротором проще по устройству и обслуживанию, а так де дешевле и легче в работе, относительно двигателей с фазным ротором.

Многоскоростные двигатели применяются в металлорежущих и деревообрабатывающих станках, в грузовых и пассажирских лифтах, для приводов вентиляторов и насосов, и в ряде других случаев. Область применения таких двигателей очень широка. Проектируемый двигатель используется в деревообрабатывающем производстве в приводах деревообрабатывающих станков. Деревообрабатывающие производства относятся к помещениям II класса по огнестойкости категории В (К категории В относятся производства связанные с обработкой твёрдых сгораемых веществ и материалов, а так же жидкостей с температурой возгорания выше 120ºС.), поэтому двигатель имеет закрытое исполнение IP44.

Наиболее часто применяются на практике полюснопереключаемые обмотки соотношением числа полюсов 1:2. Полюснопереключаемая обмотка для скоростей 1:2 выполняется, как правило, в виде двухслойной петлевой обмотки, так как однослойная обмотка даёт менее благоприятные кривые полей.

Каждая фаза обмотки с переключением числа пар полюсов в отношении 1:2 состоит из двух частей, или половин, с одинаковым количеством катушечных групп в каждой части.

Шаг обмотки при 2p1 полюсах, как правило, выбирается равным полюсному делению при 2p2 полюсах.

Удвоенное число полюсов получается при изменении направления тока в одной из двух частей каждой фазы, что делается путём переключения этих частей. Полюсное деление при этом будет равно половине полюсного деления при меньшем числе полюсов.

При переключении многоскоростной обмотки магнитные индукции на отдельных участках магнитной цепи в общем случае изменяются, что необходимо иметь ввиду при проектировании двигателя, чтобы, с одной стороны, добиться по возможности более полного использования материалов двигателя, а с другой стороны – не допустить чрезмерного насыщения цепи.

Масса и стоимость многоскоростных двигателей несколько больше, чем масса и стоимость обычных односкоростных асинхронных двигателей.

Электромагнитный расчёт

1.1. Выбор главных размеров

Высота оси вращения h=112мм

Da=0,197м (см. табл. 9.8 «Проектирование электрических машин», под ред. И.П. Копылова)

Внутренний диаметр статора:

D=kd*Da=0,55*0,197=0,1084 м,

где kd=0,55 (по табл. 9.9)

Полюсное деление τ:

τ=πD/2p=π*0,1084/2*1=0,1703 м

Расчётная мощность:

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

kE=0,97 по рис. 9.20; η=0,86; Cos φ=0,86 по рис. 9.21a

Электромагнитные нагрузки (предварительно) по рис. 9.22а:

А=24*103 А/м; Bδ=0,75Тл.

Обмоточный коэффициент для двухслойной обмотки:

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков;  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

Расчётная длина магнитопровода:

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

[Ω=2πf/p=2π*50/1=314,2]; kB=1,11.

Отношение  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

немного превышает рекомендуемое значение.

1.2. Определение Z1, W и площади поперечного сечения провода обмотки статора

Предельное значение tz1 (по рис. 9.26):

tz1max=0,016 м

tz1min=0,013 м

Число пазов статора:

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

Принимаем Z1=24, тогда q1=Z1/2pm=24/2*1*3=4

Зубцовое деление статора (окончательно):

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

Число эффективных проводников в пазу (предварительно, при условии а=1):

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

Принимаем а=2, Uп=2*22=44

Окончательные значения:

число витков в фазе

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

линейная нагрузка

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

магнитный поток

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

для двухслойной обмотки двухскоростного асинхронного двигателя

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

индукция в воздушном зазоре

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

Значения А и Bδ находятся в допустимых пределах (см. рис. 9.22,a).

Плотность тока в обмотке статора (предварительно)

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

A по п.14 23,814*103; (AJ1)=140*109 по рис. 9.27,а

16. Площадь поперечного сечения эффективного проводника (предварительно),  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

Сечение эффективного проводника (окончательно):

принимаем nэл=1, тогда qэл=qэф/nэл=1,306 мм2

принимаем обмоточный провод марки ПЭТВ (см. приложение 3)

dэл=1,32; qэл=1,368; qэф= nэл*qэл=1*1,368=1,368 мм2; dэл.из.=1,405 мм

Плотность тока в обмотке статора (окончательно):

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

1.3. Расчёт размеров зубцовой зоны статора и воздушного зазора

Принимаем предварительно по табл. 9.12

Bz1=1,9; Ba=1,55; тогда

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

kc=0,95 по табл. 9.13 для оксидированной стали марки 2013.

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

Размеры паза в штампе:

bш1=3,5; hш1=0,545о

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

Размеры паза в свету с учётом припуска на сборку:

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

площадь поперечного сечения паза для размещения проводников обмотки:

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

Коэффициент заполнения паза

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

Полученное значение kз допустимо для механизированной укладки.

1.4. Расчёт ротора

Воздушный зазор

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

принимаем δ=0,5*10-3м (по рекомендации табл. 9.9; Гольдверг «Проектирование электрических машин»)

Число пазов ротора.

Z2=18 по табл. 9.18 со скосом пазов.

Внешний диаметр ротора

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

Длина магнитопровода

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

Зубцовое деление ротора

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

Внутренний диаметр ротора равен диаметру вала, тк сердечник ротора непосредственно насаживается на вал

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков (по табл 9.19)

Ток в обмотке ротора.

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

где  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

пазы выполняются со скосом  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков; bск- скос пазов = tZ2

Площадь поперечного сечения стержня (предварительно)

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

Плотность тока J2 принимаем J2=3*106 A/м2

Паз ротора определяем по рис. 9.40a

принимаем bш2=1,5мм; hш2=0,75мм; h’ш2=0

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков- принимаем по табл. 9.12

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков;  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков- дополнительная ширина зубца

Размеры паза

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

Уточняем ширину зубцов ротора

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков 

b//2 = π Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков - b2 = π Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков- 6,8 = 7,8 мм

hn2= hш2 +  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков+ h1 +  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 0,75+ Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков+ 6,6 + Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 15,3 мм

b//Z2 = b/Z2 = 7,8 мм

Принимаем b1 = 9,1 мм; b2 = 6,8 мм; h1 = 6,6 мм

Площадь поперечного сечения стержня:

qc =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков(9,12+6,82) +  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков(9,1+6,8) ∙6,6 = 103,15 ∙10-6 м2

Плотность тока в стержне

J2 = I2/qc = 310,26/103,15 ∙10-6 = 3∙106 А/м

Плотность тока не изменилась.

Короткозамыкающие кольца. Площадь поперечного сечения кольца.

qкл =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 350,33 мм2

Iкл =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков=  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 893,35 А

∆= 2sin Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 2sin Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 2sin Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 0,3473

Iкл = 0,85 ∙I2 = 0,85 ∙ 3 ∙106 = 2,55 ∙106 А/м2

Размеры короткозамыкающих колец

hкл = 1,25 hn2 = 1,25 ∙ 15,3 = 19,125 мм

bкл = qкл/ hкл = 350,33/19,125 = 18,32 мм

qкл = hкл ∙ bкл = 19,125 ∙18,32 = 350,37 мм2

Dк.ср = D2 - hкл = 107,4-19,125 = 88,275 мм

1.5. Расчет магнитной цепи для 2р= 2

Магнитопровод из стали 2013; толщина листов 0,5 мм.

Магнитное напряжение воздушного зазора

Fδ =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 724,62 А

Кδ = Кδ1 ∙ Кδ2 = 1,168∙ 1,031 = 1,204

Кδ1 =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков=  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 1,168

j1 =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков=  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 4,083

Магнитное напряжение звуковой зоны статора

FZ1 = 2hZ1 ∙ HZ1 = 2 ∙16,46 ∙10-3 ∙ 1950 = 68,14 А

где hZ1 = hn1 = 16,46 (см. п. 20 расчета)

HZ1 = 1950 А/м

Расчетная индукция в зубцах

В/Z1 =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков=  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= 1,9

Найдем расчетную напряженность методом последовательных приближений по формулам:

В/ZХ = ВZХ+ М0НZX ∙ Knx = ВZХ+ 4π∙10-7∙ НZX∙ Knx

Knx =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков=  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= 1,915

где bnx =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 10,825 мм

bzx = bz1 = 5,95 мм

1,9 = 1,88+2,41 ∙ 10-6 ∙1950 = 1,885

Полученная точность расчета удовлетворяет требованиям, поэтому принимаем НZX = 1950А/м.

Магнитное напряжение зубцовой зоны ротора.

FZ2 = 2hz2∙ НZ2 = 2∙14,62 ∙10-3∙1980 = 57,9 А

hz2 = hn2 -0,1 b = 15,3-0,1∙6,8 = 14,62

ВZ2 =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 1,9

Кс2 = 0,95

В/Z2х = ВZ2х+ М0НZ2X ∙ Kn2x = ВZ2Х+ 4π∙10-7∙ НZ2X∙ Kn2x

Knx =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков=  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= 1,073

bn2x =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 7,95 мм

bz2x = bz2 = 7,8 мм

В/Zх = ВZх+ 1,35 ∙ 10-6 ∙ НZX

1,9 = 1,885 +1,35 ∙ 10-6 ∙1980

НZ2X = 1980 А/м

Полученная точность расчета удовлетворяет требованиям, поэтому принимаем НZX = 1950 А/м.

Коэффициент насыщения зубцовой зоны

КZ = 1+  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= 1 +  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 1,174

39. Магнитное напряжение ярма статора

Fa = La ∙Ha = 265,7 ∙10-3∙ 630 = 167,391 А

La = π Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = π Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 265,7 ∙ 10-3 м

На = 630 А/м; Ва= 1,55 Тл

Ва=  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 1,55 Тл

Магнитное напряжение ярма статора

Fa=La∙Ha=265,7∙10-3∙630=167,391A

La = π Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = π Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 265,7∙10-3 м

Ha=630A/м

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

Магнитное напряжение ярма ротора

Fj = Lj ∙Hj = 95,9 ∙10-3∙ 440 = 42,2 А

Lj = π Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = π Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 95,9∙10-3 м

hj=  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= 15,745 мм

hj=  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= 30 мм

Вj=  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 1,44 Тл

Нj = 440 А/м по табл. П1..6.

Магнитное напряжение на пару полюсов.

Fц = Fδ +Fz1 +Fz2 + Fa + Fj = 724,62+68,14+57,9+167,391+42,2+1060,251 А

Коэффициент насыщения магнитной цепи.

Кμ = Fц/ Fδ= 1060,251/724,62 = 1,463

Намагничивающий ток

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков=  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= 5,873 А

Относительное значение

Iμ* = Iμ / I1ном = 5,873 / 15,36 = 0,3824

1.6. Параметры рабочего режима для 2р=2

Активное сопротивление обмотки статора

r1= KRρ115 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 0,522 Ом

KR =1; ρ115 = 10-6/41 Ом∙м для медных проводников;

для класса непревостойкости изоляции Fυрасч = 1150С.

Длина проводников фазы обмотки:

L1 =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станковср∙W1 = 0,6654 ∙ 88 = 58,86 м

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станковср = 2( Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станковn1+ Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станковл1) = 2(0,1754 +

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станковn1 =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков1 = 0,1754 м;  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станковn1 = Кл ∙ bкт ∙ 2В = 1,2 ∙0,11441 + 2∙0,01= 0,1573 м;

bкт = π Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= π Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= 114,41 мм

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станковвыл = Квыл ∙ bкт +В = 0,26∙0,11441+0,01 = 39,747 мм

где В = 0,01 м по табл. 9.23; Кл = 1,2

Относительное значение r1

r1* = r1 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 0,522 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 0,0364

Активное сопротивление фазы алюминиевой обмотки ротора:

r2 = rс+  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= 82,95∙10-6+2 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= 118,6∙10-6 Ом

rс = ρ115 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков=  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= 82,95∙10-6Ом

KR = 1; ρ115 = 10-6/20,5 (Ом∙м) для алюминиевой обмотки ротора.

rкл= ρ115 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков=  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= 2,15∙10-6 Ом

Приводим r/2 к числу витков обмотки статора

r/2 = r2  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= 118,6∙10-6∙ Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= 0,3682

Относительное значение

r/2* = r/2  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 0,3682 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 0,0257

Индуктивное сопротивление фазы обмотки статора.

X1 = 15,8  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= 15,8  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков∙ ∙(0,9926+0,7266+2,544) = 1,144 Ом

λn1 =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков ∙ 0,625 = 0,9926

h2 = h/n.к - 2bиз = 13,06-2∙ 0,3 = 12,46 мм;

hк = 0,5(b1 – bш1_ = 0,5 (9,1-3,5) = 2,8 мм

β = урасч/ τ = 7/12; при укорочении 1/3 ≤β≤2/3

К/β = 0,25 (6β-1) = 0,25 (6 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков-1) = 0,625

Кβ = 0,25 (1+3∙ К/β) = 0,25 (1+3∙0,625) = 0,7187

ℓ/δ = ℓδ = 0,1754 м; h1 = 0 (проводники закреплены пазовой крышкой)

λл1 = 0,34 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 0,34 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= 0,7266;

где ℓл1 = 0,1573 м

λд1 =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков∙ξ =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= 2,544

ξ = 2К/ск∙Кβ – К2об1( Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков)2∙(1+β2ск)= 2∙2,3∙0,71875-0,75982∙1,322(1+12) = 1,2944

(tZ2/tZ1 = 18,74/14,2 = 1,32 по рис. 9.51(д) К/ск = 2,3; βск = 1)

Относительное значение

Х1* = Х1  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= 1,144 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 0,08

Индуктивное сопротивление фазы обмотки ротора.

X2 = 7,9 f1∙ℓ/δ Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= 7,9∙50∙0,1754∙ (1,2376 + 0,1387 + 2,6 + +0,8866) = 337∙10-6 Ом

где по табл. 9.27 (см. рис. 9.52а)

λn2=[ Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков]∙Kд+ Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= [ Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков] ∙1+ Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= 1,2376

h0 = h1 + 0,4b2 = 6,6 + 0,4∙ 6,8 = 9,32 мм;

qc = 103,15 мм2

Кд = 1

λл2 =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= 0,1387

λд2 =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков∙ξ =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= 2,6

При Z2/p≥10 можно принять ξ =1

γск = βск Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 1∙ Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= 0,69813

Кск =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков=  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= 0,9798

λск = (tZ2 ∙β2cк)/ (12Кδ∙Кμ) = (18,74∙12) / (12∙1,204∙1,463) = 0,8866

βcк = 1; Кμ = 1,463

Приводим Х2 к числу витков статора

Х/2 = Х2 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= 337∙10-6∙ Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= 1,046 Ом

Относительное значение

Х/2* = Х/2  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 1,046 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= 0,073

1.7. Расчет потерь для 2р=2

Потери в стали основные

Рст. осн = ρ1,0 150 ( Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков)β∙ (Kда ∙ В2а ∙ ma + KдZ ∙ В2Z1 ∙ mZ1) = 2,5∙( Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков)1,6∙ (1,6∙1,552∙19,23 +1,8∙1,92∙3,055) = 234,43 Вт

[ρ1,0 150 = 2,5 Вт/кг для стали 2013 по табл.9.28]

ma = π(Da-ha) ∙ha ∙ℓст1∙Кс1∙ γс = π(0,197-0,02784) ∙0,02784 0,1754∙0,95∙ 7,8∙103 = 19,23 кг.

γс = 7,8 ∙103 кг/м3 – удельная масса стали

Kда = 1,6; KдZ = 1,8; ВZ1 = 1,9 Тл; Ва = 1,55 Тл

mZ1 = hZ1 ∙bZ1ср∙Z1 ∙ℓст1 ∙ Кс1∙ γс = 16,46 ∙10-3∙5,95∙10-3∙24∙0,1754∙0,95∙ 7,8∙103 = 3,055кг

где bZ1ср = 5,95 мм = bZ1

Поверхностные потери в роторе

Рпов2= рпов2(tZ2- bш2)∙Z2∙ℓст2 = 518,831∙(18,74-1,5)∙10-3∙18∙0,1754= 28,24 Вт

рпов2 = 0,5К0,2( Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков)1,5 (В0,2 ∙tZ1∙103)2 = 0,5∙1,5( Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков)1,5 (0,4214 ∙ 0,0142 ∙103)2 = 518,831 Вт/м2,

где К0,2 = 1,5 Вδ = 0,7563 Тл

В0,2 = β0,2 ∙Кδ∙ Вδ = 0,35∙ 1,204 ∙ 0,7563 = 0,4214 Тл

β0,2 = f(bШ1/δ) = 50(3,5/0,5) = 350 мм = 0,35 м

Поверхностные потери в статоре.

Рпов1= рпов1(tZ1- bш1)∙Z1∙ℓст1 = 61,67∙(14,2-3,5)∙10-3∙24∙0,1754= 2,78 Вт

рпов1 = 0,5К0,1( Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков)1,5 (В0,1∙tZ2∙103)2 = 0,5∙15( Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков)1,5 (0,1366 ∙ 0,01874 ∙103)2 = 61,67 Вт/м2

В0,1 = β0,1 ∙Кδ∙ Вδ = 0,15∙ 1,204 ∙ 0,7563 = 0,1366 Тл

β0,1 = f(bШ2/δ) = 50(13,5/0,5) = 150 мм = 0,15 м

Пульсационные потери в зубцах ротора.

Рпул2 = 0,11( Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков)2mZ2 = 0,11( Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков)2 ∙ 2,668 = 16,3 Вт/м2

Впул2 =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= 0,1035 Тл

ВZ2ср = 1,9 (п.37 расчета); γ1= 4,083 (п.35 расчета)

mZ2 = Z2 ∙hZ2 ∙ bZ2ср ∙ℓст2 ∙ Кс2 ∙ γ2 = 18 ∙ 14,62∙10-3 ∙7,8∙10-3 ∙0,1754 ∙0,95 ∙7,8∙103 = 2,668 кг

Пульсационные потери в зубцах статора.

Рпул1 = 0,11( Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков)2mZ1 = 0,11( Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков)2 ∙ 3,055 = 1,385 Вт

Впул1 =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= 0,0376

γ2 =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 1,125

Сумма добавочных потерь в стали

Рст. доб. = Рпов1 + Рпул1+ Рпов2 + Рпул2 = 2,78 +1,385+28,24+16,3 =48,705 Вт

Полные потери в стали

Рст. = Рст. осн. + Рст. доб = 234,43 + 48,705 = 283,135 Вт

Механические потери

Рмех = Кт( Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков)2 ∙ (10∙Dвент)3 = 2,9 ( Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков)2 ∙(10∙0,197)3 = 199,544 Вт

Кт = 2,9 (для двигателей с аксиальной системой вентиляции),

где Dвент≈ Dа, Dвент – наружный диаметр вентилятора.

Холостой ход двигателя.

IХ.Х. =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 5,93 А

IХ.Х.а =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 0,8132 А

Рэ1хх = m∙ I2μ∙r1 = 3∙5,8732 ∙0,522 = 51,0146 Вт

IХ.Х.р ≈ Iμ = 5,873 А

Cosφx.x. = IХ.Х.а / IХ.Х. = 0,8132 / 5,03 = 0,1371

1.8. Расчет магнитной цепи для 2р=4

Магнитное напряжение воздушного зазора.

Fδ =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 681,314 А

Вδ =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 0,7111

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 6,76 ∙10-3 Вб

Магнитное напряжение зубцовой зоны статора

FZ1 = 2h1 ∙ HZ1 = 2∙16,46 ∙10-3 ∙1450 = 47,73 А

HZ1 = 1450 А/м

В/Z1 =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 1,786

Принимаем ВZ1 = 1,786 Тл, проверяем соотношение В/Z1 и ВZ1

1,786 = 1,784 +2,41∙ 10-6 ∙1450 = 1,787

Полученная точность расчета удовлетворяет требованиям, поэтому принимаем HZх = 1450 А/м

Магнитное напряжение зубцовой зоны ротора.

FZ2 = 2hZ2 ∙ HZ2 = 2∙14,62 ∙10-3 ∙1500 = 43,86 А

HZ1 = 1500 А/м

ВZ2 =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 1,798 ≈ 1,8

1,8 = 1,795 + 1,35 ∙ 10-6 ∙ 1500 = 1,797

Полученная точность расчета удовлетворяет требованиям, поэтому принимаем HZ1 = 1500 А/м

Коэффициент насыщения зубцовой зоны.

Кz = 1+  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 1+  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 1,14

Магнитное напряжение ярма статора.

Fa = La ∙Ha = 132,858 ∙10-3∙ 106 = 14,083 А

La = π Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = π Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 132,858 ∙ 10-3 м

На = 106 А/м;

Ва=  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 0,73

Магнитное напряжение ярма ротора.

Fj = Lj ∙Hj = 47,95 ∙10-3∙ 231 = 11,076 А

Lj = π Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = π Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 47,95∙10-3 м

hj= 15,745∙10-3 м

h/j=  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= 18∙10-3 м

Вj=  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 1,127 Тл

Нj= 231 А/м

Магнитное напряжение на пару полюсов.

Fy=Fδ+FZ1+FZ2+Fa+Fj=681,314+47,73+43,86+14,083+11,076=798,063 А.

Коэффициент насыщения магнитной цепи.

kм=Fy/ Fδ=798,063/681,314=1,1714

Намагничивающий ток.

Iм= Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков=4,157 А.

Относительное значение.

Iм*= Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков=0,5413

1.9. Параметры рабочего режима для 2р=4

Активное сопротивление обмотки статора.

r1=kR∙ρ115 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков=1∙ Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков=2,088 Ом.

kR=1

L1=lep∙w1=06654∙176=117,11 м.

lсp1=0,6654 м; ln1=l1=175,4 мм=0,1757 м; lл1=0,1573 м

Относительное значение

r1*=r1 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков=2,088 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков=0,073.

Активное сопротивление фазы алюминиевой обмотки ротора.

r2 = rс+2 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= 82,65∙10-6+2 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков=92,14∙10-6 Ом.

rс = 82,65∙10-6 Ом; rкл = 2,15 ∙10-6 Ом

∆2= 2 sin  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 2sin Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 0,684

Приводим r2 к числу витков обмотки статора

r/2 = r2 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 92,14∙10-6  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 1,294

Относительное значение

r/2*= r/2 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков=1,294 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= 0,0452

Индуктивное сопротивление фазы обмотки статора.

Х1 = 15,8 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= 15,8  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков (1,121+ 0,2337 + 4,57) = 3,18 Ом

λn1 =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков=  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков=1,121

h2 = 12,46 мм; hк = 2,8 мм; h1 = 0; Кβ = К/β = 1

λл1 = 0,34 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= 0,34 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= 0,2337

λД1 =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков ξ=  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= 4,57

ξ = 2∙ Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= 2∙2,3∙1-0,8082∙(1,32)2(1+12) = 2,325;

К/ск = 2,3; βск = 1; tZ2 / tZ1 = 1,32

Относительное значение

Х1*= х1 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 3,18 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= 0,111

Индуктивное сопротивление фазы обмотки ротора.

Х2 = 7,9 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= 7,9∙50∙0,1754 (1,2376+ 0,0358+ 2,6+ 1,1073) = 345,08 Ом

λn2 = 1,2376 λД2 = 2,6

λл2 =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 0,0358

λск = (tZ2 ∙β2cк) / (12∙Кδ ∙ К∙μ) = (18,74∙12) / (12∙1,204 ∙1,1714) = 1,1073

К∙μ = 1,1714

Приводим Х2 к числу витков статора

Х/2 = х2 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 345,08 ∙10-6 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 4,846

Относительное значение

Х/2*= х/2 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 4,846 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= 0,17

1.10. Расчет потерь для 2р=4

Потери в стали основные

Рст. осн = ρ1,0 150 ( Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков)β∙(Kда∙В2а∙ma+KдZ∙В2Z1∙mZ1)=2,5∙( Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков)1,6∙ (1,6∙0,732∙19,23 + 1,8∙1,7862∙3,055) = 84,78 Вт

[ρ1,0 150 = 2,5 Вт/кг для стали 2013 по табл.9.28]

ma = 19,23 кг; Kда = 1,6; KдZ = 1,8; ВZ1 = 1,786 Тл; Ва = 0,73 Тл

m1 = 3,055кг

Поверхностные потери в роторе

Рпов2= рпов2(tZ2- bш2)∙Z2∙ℓст2 = 92,8∙(18,74-1,5)∙10-3∙18∙0,1754= 5,05 Вт

рпов2 = 0,5К0,2( Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков)1,5 (В0,2 ∙tZ1∙103)2 = 0,5∙1,5( Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков)1,5 (0,2997 ∙ 0,0142 ∙103)2 = 92,8 Вт/м2,

В0,2 = β0,2 ∙Кδ∙ Вδ = 0,35∙ 1,204 ∙ 0,7111 = 0,2997 Тл

β0,2 = f(bШ1/0,5) = 50(3,5/0,5)∙ 10-3 = 0,35 м

Поверхностные потери в статоре.

Рпов1= рпов1(tZ1- bш1)∙Z1∙ℓст1 = 19,273∙(14,2-3,5)∙10-3∙24∙0,1754= 0,87 Вт

рпов1 = 0,5К0,1( Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков)1,5 (В0,1∙tZ2∙103)2 = 0,5∙15( Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков)1,5 (0,13∙0,01874 ∙103)2 = 19,273 Вт/м2

В0,1 = β0,1 ∙Кδ∙ Вδ = 0,15∙ 1,204 ∙ 0,7111 = 0,13 Тл

β0,1 = f(bШ2/δ) = 0,15 м

Пульсационные потери в зубцах ротора.

Рпул2 = 0,11( Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков)2 mZ2 = 0,11( Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков) ∙ 2,668 = 3,653 Вт

Впул2 =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= 0,098 Тл

ВZ2ср = 1,8 (п.59 расчета); γ1= 4,083 mZ2 = 2,668 кг

Пульсационные потери в зубцах статора.

Рпул1 = 0,11( Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков)2 mZ1 = 0,11( Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков)2 ∙ 3,055 = 0,307 Вт

Впул1 =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= 0,0354

γ2 =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 1,125

ВZ1ср = 1,786 из п. 58 расчета mZ1 = 3,055 кг

Сумма добавочных потерь в стали

Рст. доб. = Рпов1 + Рпул1+ Рпов2 + Рпул2 = 0,87 +0,307+5,05+3,653 =9,88 Вт

Полные потери в стали

Рст. = Рст. осн. + Рст. доб = 84,78 + 9,88 = 94,66 Вт

Механические потери

Рмех = Кт( Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков)2 ∙ (10∙Dвент)3 = 2,9 ( Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков)2 ∙(10∙0,197)3 = 49,886 Вт

Холостой ход двигателя.

IХ.Х. =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 4,168 А

IХ.Х.а =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 0,301 А

Рэ1хх = m∙ I2μ∙r1 = 3∙4,1572 ∙1,044 = 54,123 Вт

Cosφx.x. = IХ.Х.а / IХ.Х. = 0,301 / 4,168 = 0,0722

1.11. Расчет рабочих характеристик для 2р=2

Параметры:

r12 =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 2,266 Ом

Х12 =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков- 3,18 = 34,28 Ом

С1 = 1 +  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= 1+  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = 1,093

Используем приближенную формулу, т.к.  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков < 10

γ = arctg Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= arctg Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков  1,0;

где Х = h2/ (12R2c)

m – масса, приходящаяся на 1 см2 средней цилиндрической поверхности ярма;

h – высота спинки статора, см;

Rc – средней радиус ярма, см;

Е – модуль упругости, Н/см2.

Параметры колебательной системы, эквивалентной статору: колеблющаяся масса (в кг).

mc = Мc / (2πRc ∙ℓt),

где Мc – полная масса пакета железа статора с обматкой или станины с полюсами;

ℓt – активная длина ярма;

приведенная податливость статора равна:

для колебаний при r = 0 λс = R2c / (Eh);

для колебаний при r ≥ 2

  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков при  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков≤ 1,0;

λс =

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков(1+3r2X) при  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков> 1,0

Полное механическое сопротивление статора при частоте ω возбуждающих сил Zc = ω mc -1 / (ωλc).

Скорость колебаний на поверхности сердечника статора у = р0/Zc, здесь р0 = р01R0 /Rc,

где р01 - удельная сила, действующая в воздушном зазоре, Н/см2;

R0 – радиус расточки статора, см.

При жестком креплении машины к фундаменту пространственные формы колебаний статора искажаются. Поэтому при исследованиях виброакустических характеристик машин принята методика, при которой машина устанавливается на амортизаторы, чем исключается влияние фундаментов.

В машинах переменного тока пакет железа статора преимущественно жестко крепится в корпусе, поэтому необходимо учесть сопротивление корпуса:

Zк = ω mc -1 / (ωλк).

При этом колебательная скорость на поверхности корпуса

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков2 = р0/(Zc +Zк).

Величины mк и λк рассчитываются аналогично расчету mс и λс.

Влияние режима работы на уровень громкости магнитного шума.

Расчет радиальных сил в режиме холостого хода может быть произведен по формулам:

Р1 = 20В2δ и Рυμ = 40Вυ ∙Вμ

1) Основная волна магнитного поля при переходе от нагрузки к режиму холостого хода практически не меняет свою величину;

2) Высшие гармоники обмотки статора Вυ и ротора Вμ меняют свою величину пропорционально I1/I0r и I/2/I0r соответственно. Поэтому уровень вибрации, возбуждаемой этими гармониками полей, при переходе от нагрузки к режиму холостого хода должен понизиться на значение

ΔL = 20lg Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков-20lg Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

Аэродинамический шум

Основные причины возникновения:

1. Шум вентилятора, обусловленный срывающимися вихрями от рассечения воздушной струи кромками лопаток и дисками вентилятора.

2. Шум вращения ротора, обусловленный срывом вихрей с его поверхности от рассечения воздушной струи головками обмоток ротора или выступающими концами стержней беличьей клетки короткозамкнутых роторов.

3. Шум воздушных потоков, вызываемых срывом вихрей с неподвижных препятствий в вентиляционных путях. Например, на решетках входных и выходных окон, с ребер статора, лобовых частей обмоток статора и др.

4. Звуки, вызываемые тем, что воздушный поток на выходе с вентиляторного колеса встречает на своем пути препятствия в виде ребер, проходных шпилек и др. деталей.

5. Тональные звуки дискретной частоты, вызванные периодическими колебаниями давления на отдельных участках аэродинамической цепи. Например, при пульсациях потока воздуха, выходящего из радиальных вентиляционных каналов ротора и входящего в радиальные вентиляционные каналы статора.

Общие уровни громкости шума электрических машин на расстоянии 0,5 м от корпуса в точке с максимальным уровнем рассчитывают по следующим приближенным формулам: L = 10lgP +20lgn +5, машины защищенного исполнения с самовентиляцией, где Р – мощность машины, кВт; n – частота вращения, об/мин;

машины с замкнутой самовентиляцией:

L = 10lgP +20lgn;

машины закрытые с водяным охлаждением:

L = 10lgP +20lgn -10;

машины с независимой вентиляцией, шум которых определяется шумом вентилятора:

L = 14lgP +80, где Р – мощность вентилятора, кВт.

Колебания ротора.

Колебания вала с одной сосредоточенной массой сердечника ротора вызывают дополнительные нагрузки на подшипниковые опоры и соответственно шум и вибрацию.

Проблема математического описания колебания роторов чрезвычайно сложна, поэтому здесь не рассматривается.

Уравновешивание роторов

Одной из основных причин вибрации вращающегося ротора и всей машины в целом является неуравновешенность ротора (небаланс). Три возможных случая его небаланса:

Статический – центробежная сила небаланса вызывает на опорах одинаковые по значению и совпадающие по фазе вибрации: А1= А2;

Динамический – пара центробежных сил небаланса вызывает на опорах одинаковые по значению и противоположные по фазе вибрации: А1 = -А2;

Смешанный – остаточный небаланс ротора приводит к паре сил и к радиальной силе, приложенной в центре тяжести ротора; вибрации опор здесь различаются как по значению, так и по фазе: А1 ≠ А2.

Наиболее распространенный в практике – смешанный. Эти виды небаланса могут быть устранены путем установки добавочных грузов, которые привели бы к компенсации. Обычно грузы устанавливают в двух плоскостях ротора, в специальных круговых канавках с радиусом r. Например, при статическом небалансе mнеб = (e /r) М,

где М – масса ротора, е – смещение центра тяжести ротора.

 Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков = Мω2е /Zм – скорость колебания опор.

А1 = Мωе /Zм = mнеб(ω r/ Zм) = mнеб∙ К – амплитуда вибрации,

где Zм = механическое сопротивленииемашины.

Величина ω r/ Zм = К характеризует балансировочную чувствительность машины.

Тепловой небаланс вызывается неравномерным нагревом или охлаждением активной зоны ротора и встречается в турбогенераторах с воздушным и непосредственным водяным охлаждением.

Вибрация машин, возбуждаемая небалансом

Роторы различных типов электрических машин имеют свои конструктивные особенности, поэтому поддаются уравновешиванию с различной степенью тяжести.

Самая высокая точность может быть достигнута в асинхронных двигателях с короткозамкнутым ротором. Роторы этих машин термически стабильны во времени и практически не меняют свой небаланс в эксплуатации.

Якоря машин постоянного тока и явно полюсные роторы синхронных машин имеют более высокий остаточный небаланс. Стабильность вибрации указанных машин достигается особой технологией формовки и запечки коллекторов и обмоток роторов.

Самые высокие вибрации наблюдаются в машинах с гибкими роторами, у которых рабочая частота вращения выше первой и второй критической. Роторы этих машин особенно чувствительны к тепловой несимметрии и требуют дополнительной балансировки ротора в собранной машине.

При разработке норм на допустимый остаточный небаланс роторов электрических машин и вызываемые им вибрации исходят из необходимости выполнения следующих требований:

1) обеспечить отсутствие усталостных разрушений в течение установочного срока службы машины;

2) уровень вибрации электрических машин не должен отражаться на качестве технологических процессов;

3) вибрация машин при их эксплуатации не должна оказывать вредного физического воздействия на человека.

В зависимости от размеров и требований к исполнению машины ее относят к одному из классов вибрации, которые обозначаются индексами, соответствующими максимально допустимой для данного класса вибрационной скорости Vэф. max (в мм в сек): 0,28; 0,45; 0,71; 1,12; 1,8; 2,8; 4,5; 7,1. По стандарту НСО-2372-74 двигатели мощностью до 15 кВт, встраиваемые в основной механизм, относят к классу вибрации 18,, большие машины на тяжелых фундаментах – 4,5.

Вибрация машины, возбуждаемая небалансом, практически не поддается расчету из-за невозможности определить распределение остаточной неуравновешенности во всем объеме ротора. В самом простом случае, когда в роторе имеется чисто статический небаланс, центр тяжести машины совпадает с центром тяжести амортизирующего крепления, расчет вибрации производят как для одномассовой системы, в которой расчетными элементами являются масса машины и жесткость амортизации. При гибком роторе, жесткость которого соизмерима с жесткостью амортизации, расчет производят как для двухмассовой системы, в которой расчетными элементами являются массы статора и ротора, а так же жесткость ротора при изгибе и жесткость амортизации. Вибрация машины в дБ, измеренная по ускорению, будет тем выше, чем быстроходнее машина.

Источники вибраций подшипников качения.

При изготовлении деталей подшипников имеют место отклонения в пределах допусков, нормированных соответствующими ГОСТ. Этими отклонениями в значительной мере обусловлены вибрация и шум подшипников. Наиболее существенные: радиальный и осевой бой колец, овальность, гранность и конусность колец; разномерность, овальность и гранность шариков; допуски в гнездах сепараторов; волнистость и шероховатость дорожек качения.

Классы точности исполнения подшипников: Н – нормального, П – повышенного, В – высокого, А – особо высокого, С- сверхвысокого.

1. Радиальный бой внутреннего кольца подшипника вызывает вибрации, подобные остаточному небалансу ротора. Радиальный бой наружных колец нарушает соосность в подшипниковых узлах. Боковое биение торцов внутренних и наружных колец вызвано их непараллельностью величина указанного боя тем меньше, чем выше прецизионность подшипника.

2. Овальность и конусность колец допускается в пределах 0,5 допуска на диаметр для подшипников класса Н и 0,25 для класса С. Овальность колец является причиной вибрации с двойной частотой f = 2n/60.

3. Вибрация, возбуждаемая разномерностью шариков, зависит от угловой скорости сепаратора и конкретного распределения разномерных шариков в подшипнике.

f =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков, где r1 и r2 – радиусы дорожек качения внутреннего и наружного колец.

Z – число тел качения.

4. Овальность и гранность тел качения зависит от класса точности подшипников. Для класса С она в 5 раз меньше, чем для класса Н. Частота вибрации, вызванная гранностью тел качения:

f =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков, где D0 – диаметр центров тел качения,

dШ – диаметр тел качения,

К- число граней.

5. Зазоры в гнездах сепараторов – существенный источник вибрации подшипников. Чрезмерно большие зазоры приводят к смещению сепаратора на величину зазора и появлению вибрации частотой: f =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков.

Малые зазоры могут быть причиной залегания шариков и нарушения кинематики вращения подшипника, что также вызывает повышенный шум.

6. Возникающие в подшипниковых узлах динамические импульсы от волнистости не имеют периодического характера. Спектр вибраций нестабилен. Волнистостью считают углубления, превышающие 0,1 мкм с длиной волны, соизмеримой с радиусом шарика. Частота, обусловленная волнистостью:

f =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков, где m – число волнистостей по окружности дорожки качения внутреннего или наружного кольца.

Шероховатость поверхностей качения имеет меньшее значение в шумообразовании подшипников из-за малого расстояния между отдельными выступами по сравнению с радиусами шариков.

Кроме указанных причин, возможны локальные дефекты на дорожках качения: при транспортировке – местный наклеп дорожек качения. Частота этой вибрации: f =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков, где К2 – число дефектов на дорожках качения. Вибрация подшипников возбуждается также периодическими изменениями жесткости подшипника, при перекатывании тел качения.

Частота: f =  Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков. На уровень вибрации кроме жесткости колец влияют радиальный зазор и нагрузка на подшипник.

Виброизоляция машин

Допустим, неуравновешенная машина устанавливается на фундамент, колебания которого нежелательны. Задача заключается в установке машины так, чтобы на фундаменте, с которым она связана, колебания были малыми. Решение сводится к установке машины на амортизаторах и правильному их выбору.

Эффективность виброизоляции (в дБ)

ВН = 20lg Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков= 10 lg Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков

При низких частотах вращения (n=ω/ω0 1, ВН = 10 lg[Z2ф n2+ ω20M2 / (Z2ф+ω20М2n2)]. Если полное сопротивление фундамента во много раз больше полного сопротивления виброизолируемого механизма, т.е. выполняется условие ω20М2n2/ Z2ф 0. А при значении q’’ NPV’’0 но →0



Наш опрос
Как Вы оцениваете работу нашего сайта?
Отлично
Не помог
Реклама
 
Мнение авторов может не совпадать с мнением редакции сайта
Перепечатка материалов без ссылки на наш сайт запрещена