Каталог курсовых, рефератов, научных работ! Ilya-ya.ru Лекции, рефераты, курсовые, научные работы!

Тепловой расчет реактора

Тепловой расчет реактора

МЭИ (ТУ)

 

 

Кафедра парогенераторостроения

 

 

Типовой расчёт по курсу:

Генераторы тепловой энергии

Тепловой расчёт ВВЭР

 

 

 

 

 

 

 

 

 

 

 

Студент: Иванов А.А.

Группа: С-2-95

Преподаватель: Двойнишников В.А.

 

 

 

 

 

 

 

Москва 2000 год

Аннотация.

В данной работе решались следующие задачи:

расчёт реактора при m = 1 и qv = 100 и определение его экономичности и надёжности при учёте наложенных ограничений: 1.6 < n < 2.2,

2 < Wт <10 м/с, tоб < 350 оС, tc < 2300 оС.

нахождение области допустимых значений относительной высоты активной зоны m и удельного энерговыделения qv (m = 0.8 … 1.6,

qv = 50 … 150) при учёте наложенных ограничений: 1.6 < n < 2.2,

2 < Wт <10 м/с, tоб < 350 оС, tc < 2300 оС.

для выбранного варианта расчёт температуры сердечника, оболочки и теплоносителя по высоте активной зоны.

 

Содержание:

Введение Исходные данные Тепловой расчёт реактора при m = 1 и qv = 100 МВт/м3

3.1. Определение размеров активной зоны реактора и скорости теплоносителя

3.2. Определение коэффициента запаса по критической тепловой нагрузке

3.3. Расчёт максимальных температур оболочки ТВЭЛа и материала

топливного сердечника

3.4. Определение области допустимых значений m и qv

3.5. Расчёт распределения температуры теплоносителя, оболочки и топливного

сердечника по высоте активной зоны реактора

4. Выводы

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Введение

Назначение и виды тепловых расчётов реакторов.

Тепловой расчет ядерного реактора является одной из необходимых составных частей процесса обоснования и разработки конструкции. Без него невозможны ни предварительные поисковые проработки, ни определение оптимальных проектных решений.

Тепловые расчеты обычно выполняются одновременно с гидравлическим и нейтронно-физическим расчетами реактора. В зависимости от задач, решаемых на том или ином этапе проработки конструкции, различают поисковые и поверочные расчеты

Поисковые тепловые расчеты проводятся в период определения основных конструктивных решений. При их выполнении, как правило, известны тепловая мощность реактора, распределение плотности энерговыделения, вид теплоносителя и его параметры все эти данные получают в результате нейтронно-физического расчета, а также тип и конструкция ТВЭЛов и кассет, определяемых техническим заданием на основе накопленного опыта проектирования, изготовления и эксплуатации. В результате определяются размеры активной зоны и других элементов реактора, находятся, а при необходимости уточняются параметры теплоносителя, определяются характерные температуры, выбираются конструкционные материалы и топливные композиции.

По мере разработки конструкции тепловые расчеты выполняются снова, но более детально, с учетом выбранных конструктивных решений, как для номинального режима, так и для работы на частичных нагрузках. Также обсчитываются тепловые режимы работы оборудования при переходных процессах при пуске, останове, изменении нагрузки, характерных как для штатных ситуаций, так и в аварийных случаях. Во всех этих случаях тепловой расчет носит характер поверочного, и его основной задачей является определение термодинамических характеристик теплоносителя и тепловых параметров характеризующих условия функционирования элементов ядерного реактора. Обеспечение надежной работы реактора в целом и его отдельных элементов, достижение высокой экономичности реакторной установки требует высокой точности определения теплотехнических параметров, что ведет к существенному усложнению всех видов расчетов, в том числе и теплового. Необходимость же их автоматизации приводит к созданию сложных программных комплексов, объединяющих тепловые, Гидравлические, нейтронно-физические и прочностные расчеты.

Настоящий метод ориентирован на использование несколько упрощенного теплового расчета, базирующегося на одномерном представлении протекания процессов тепло - и массообмена в одной ячейке активной зоны реактора.

2. Исходные данные.

Для выполнения теплового расчета водо-водяного энергетического реактора (ВВЭР) в соответствии с упрощенной методикой требуются исходные данные, условно подразделяемые на режимные и конструктивные,

Данные режимного типа:

Тепловая мощность ВВЭР N = 1664.87 МВт

Конструктивные данные:

Характеристики кассеты:

Число ТВЭЛов в кассете nТВЭЛ = 331

Шаг решётки а¢ ¢ = 12.75·10-3 м

Размер кассеты “под ключ” а¢ = 0.238 м

Толщина оболочки кассеты δ = 1.5·10-3 м

Характеристика ТВЭЛа:

Радиус топливного сердечника r1 = 3.8·10-3 м

Внутренний радиус оболочки r2 = 3.9·10-3 м

Внешний радиус оболочки rq = 4.55·10-3 м

Размер ячейки а = 0.242 м Материал оболочки ТВЭЛов и кассет: 99% циркония и 1% ниобия Топливная композиция: двуокись урана

 

3.Тепловой расчёт реактора при qv= 100 МВт/м3 и m= 1

Определение размеров активной зоны реактора и скорости теплоносителя. Температура теплоносителя на выходе из реактора

tвых = 314 ° C

Принимаем из расчёта парогенератора

Температура теплоносителя на входе в реактор

tвх = 283 ° C

Принимаем из расчёта парогенератора

Перепад температур теплоносителя между входом и выходом

Δtт = tвых - tвх = 314 – 283 = 31 ° С

Температура воды на линии насыщения

Запас до температуры кипения δt = 30 ° C

ts = tвых + δt = 314 + 30 = 344 ° C

Давление в реакторе

P = 15.2 МПа

Расход воды (теплоносителя) на один реактор

средняя температура воды в реакторе tср =  Тепловой расчет реактора = 298.5 ° C

средняя теплоёмкость воды Cp = 5.433 кДж/кг

Gт =  Тепловой расчет реактора =9885.05 кг/с

Принимаем из расчёта парогенератора.

Объём активной зоны реактора.

Средняя плотность тепловыделения АЗ реактора qv = 100 МВт/м3

VАЗ =  Тепловой расчет реактора= 16.648 м3

Диаметр активной зоны реактора

Параметр m* =  Тепловой расчет реактора= 1

DАЗ =  Тепловой расчет реактора = 2.767 м

Число кассет в активной зоне

Площадь поперечного сечения ячейки: Sяч = 0.866·a2 = 5.072·10-2 м2

 Тепловой расчет реактора = 178.2 шт.

т.к. Тепловой расчет реакторадробное, то округляем его до ближайшего большего целого числа

Nкас = 179 шт. с последующим уточнением величин:

DАЗ= Тепловой расчет реактора= 3.4 м

m =  Тепловой расчет реактора= 0.993

Высота активной зоны реактора

HАЗ = m·DАЗ = 0.993·3.4 = 3.376 м

Тепловыделение в ТВЭЛах

Доля теплоты выделяемая в ТВЭЛах κ1 = 0.95

= κ1·N = 0.95·3064 = 2910.8 МВт

Суммарная поверхность ТВЭЛ

F = 2·π·rq·HАЗ·nТВЭЛ·Nкас = 2·π·4.55·10-3·3.376·331·179 = 5719 м2

Расход теплоносителя через одну кассету

Gтк =  Тепловой расчет реактора= 90.22 кг/с

3.1.14. Скорость теплоносителя в активной зоне реактора

сечение для прохода теплоносителя около одного ТВЭЛа SвТВЭЛ = 0.866·(a¢ ¢ )2-

-π·rq2 = 0.866·(12.75·10-3)2 – π·(4.55·10-3)2 = 7.574·10-5 м2

сечение для прохода теплоносителя в кассете Sвкас = SвТВЭЛ·nТВЭЛ = 7.574·10-5·331 = 2.507·10-2 м2

плотность воды при средней температуре и давлении в реакторе ρв = 713.2 кг/м3

Wт =  Тепловой расчет реактора= 5.046 м/с

Определение коэффициента запаса по критической тепловой нагрузке.

3.2.1. Коэффициенты неравномерности тепловыделения

Эффективная добавка отражателя δ0 = 0.1 м

Эффективная высота активной зоны Hэф = HАЗ + 2·δ0 = 3.376 + 2·0.1 = 3.576 м

по оси реактора: Kz =  Тепловой расчет реактора= 1.489

по радиусу активной зоны: Kr =  Тепловой расчет реактора= 2.078

3.2.2. Коэффициент неравномерности тепловыделения в объёме АЗ

Kv = Kz·Kr = 1.489·2.078 = 3.094

Максимальная величина тепловой нагрузки на единицу поверхности ТВЭЛа

Средняя тепловая нагрузка на единицу поверхности ТВЭЛа qF =  Тепловой расчет реактора= =0.509 МВт/м2

qmax = qF·Kv = 0.509·3.094 = 1.575 МВт/м2

Критический тепловой поток кризиса первого рода для трубы d = 8 мм

Теплота парообразования теплоносителя R = 931.2 кДж/кг

Температура воды на линии насыщения ts = 347.32 ° C

Величина паросодержания теплоносителя в центральной точке реактора xкр = = Тепловой расчет реактора = -0.2782

qкр(8) = Тепловой расчет реактора

 Тепловой расчет реактора=

= 1.347·3.5990.5549·е0.4173 = 4.161 МВт/м2

Критический тепловой поток кризиса первого рода для труб диаметром 2rq

qкр(2rq) =  Тепловой расчет реактора= 3.901 МВт/м2

Коэффициент запаса по критической нагрузке.

nзап =  Тепловой расчет реактора= 2.477

Расчёт максимальных температур оболочки ТВЭЛа и материала топливного сердечника.

3.3.1. Максимальное тепловыделение в центре реактора приходящееся на единицу высоты ТВЭЛа.

ql,0=  Тепловой расчет реактора= 4.503·10-2 МВт/м

Коэффициент теплоотдачи от стенки к теплоносителю.

Коэффициент теплопроводности теплоносителя λ = 548.3·10-3 Вт/(м·К) при температуре tcр

Эквивалентный диаметр сечения для прохода воды dэкв =  Тепловой расчет реактора= 6.851·10-3 м

Кинематическая вязкость воды. Для её определения необходимо найти динамическую вязкость. μ = 8.936·10-5 Па/с. ν =  Тепловой расчет реактора Тепловой расчет реактора= 1.253·10-7 м2/с

Критерий Рейнольдса Re =  Тепловой расчет реактора= 2.759·105

Число Прандтля Pr = 0.9217

α= Тепловой расчет реактора=3.685·104 Вт/м2К

Перепад температуры между оболочкой ТВЭЛа и теплоносителем в центре реактора.

Δθа0 =  Тепловой расчет реактора= 40.61 ° С

Координата в которой температура на наружной поверхности оболочки ТВЭЛа максимальна.

Z*= Тепловой расчет реактора=0.4287м

Максимальная температура наружной поверхности оболочки ТВЭЛа

t Тепловой расчет реактора= 351.7 ° C

Температурный перепад в цилиндрической оболочке ТВЭЛа

Коэффициент теплопроводности материала оболочки λоб = 24.1 Вт/(м·К)

Δθоб0 =  Тепловой расчет реактора= 43.55 ° С

Температурный перепад в зазоре ТВЭЛа

Коэффициент теплопроводности газа в зазоре λз = 30 Вт/(м·К)

Δθз0 =  Тепловой расчет реактора= 18.52 ° С

Температурный перепад в цилиндрическом сердечнике

Коэффициент теплопроводности в цилиндрическом сердечнике λс = 2.7 Вт/(м·К)

Δθс0 =  Тепловой расчет реактора= 1261 ° С

Перепад температур между теплоносителем и топливным сердечником

Δθс = Δθа0 + Δθоб0 + Δθз0 + Δθс0 = 42.46 + 43.55 + 18.52 + 1261 = 1366 ° С

Максимальная температура топливного сердечника

t Тепловой расчет реактора = 1674 ° C

3.4 Определение области допустимых значений m и qv

Исходные данные для расчёта по программе WWERTR

Тепловая мощность реактора [МВт] Давление в реакторе [МПа] Перепад температур воды [° C] Радиус топливного сердечника ТВЭЛа [м] Внутренний радиус оболочки ТВЭЛа [м] Внешний радиус оболочки ТВЭЛа [м] Шаг решетки [м] Размер кассеты “под ключ” [м] Размер ячейки [м] Толщина оболочки кассеты [м] Эффективная добавка отражателя [м] Число ТВЭЛов в кассете [шт] Температура воды на линии насыщения [° С] Теплота парообразования [кДж/кг] Теплоемкость воды [кДж/кг·К] Теплопроводность воды [Вт/м·° С] Кинематическая вязкость воды [м2/с] Число Прандтля Плотность воды [кг/м3] Теплопроводность оболочки ТВЭЛа [Вт/м·° С] Теплопроводность газа в зазоре ТВЭЛа [Вт/м·° С] Теплопроводность двуокиси урана [Вт/м·° С] Удельное энерговыделение [кВт/л] Относительная высота активной зоны Расч. скорость воды [м/с] Расч. коэффициент запаса Расч. координата точки с мак. темп. оболочки [м] Расч. мак. температура оболочки ТВЭЛа [° С] Расч. мак. температура сердечника ТВЭЛа [° С]

Наш опрос
Как Вы оцениваете работу нашего сайта?
Отлично
Не помог
Реклама
 
Мнение авторов может не совпадать с мнением редакции сайта
Перепечатка материалов без ссылки на наш сайт запрещена